Suppr超能文献

短内部插入缺失及其对蛋白质折叠影响的系统分析。

Systematic analysis of short internal indels and their impact on protein folding.

作者信息

Kim RyangGuk, Guo Jun-tao

机构信息

Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte 9201 University City Blvd, Charlotte, NC 28223 USA.

出版信息

BMC Struct Biol. 2010 Aug 4;10:24. doi: 10.1186/1472-6807-10-24.

Abstract

BACKGROUND

Protein sequence insertions/deletions (indels) can be introduced during evolution or through alternative splicing (AS). Alternative splicing is an important biological phenomenon and is considered as the major means of expanding structural and functional diversity in eukaryotes. Knowledge of the structural changes due to indels is critical to our understanding of the evolution of protein structure and function. In addition, it can help us probe the evolution of alternative splicing and the diversity of functional isoforms. However, little is known about the effects of indels, in particular the ones involving core secondary structures, on the folding of protein structures. The long term goal of our study is to accurately predict the protein AS isoform structures. As a first step towards this goal, we performed a systematic analysis on the structural changes caused by short internal indels through mining highly homologous proteins in Protein Data Bank (PDB).

RESULTS

We compiled a non-redundant dataset of short internal indels (2-40 amino acids) from highly homologous protein pairs and analyzed the sequence and structural features of the indels. We found that about one third of indel residues are in disordered state and majority of the residues are exposed to solvent, suggesting that these indels are generally located on the surface of proteins. Though naturally occurring indels are fewer than engineered ones in the dataset, there are no statistically significant differences in terms of amino acid frequencies and secondary structure types between the "Natural" indels and "All" indels in the dataset. Structural comparisons show that all the protein pairs with short internal indels in the dataset preserve the structural folds and about 85% of protein pairs have global RMSDs (root mean square deviations) of 2A or less, suggesting that protein structures tend to be conserved and can tolerate short insertions and deletions. A few pairs with high RMSDs are results of relative domain positions of the proteins, probably due to the intrinsically dynamic nature of the proteins.

CONCLUSIONS

The analysis demonstrated that protein structures have the "plasticity" to tolerate short indels. This study can provide valuable guides in modeling protein AS isoform structures and homologous proteins with indels through placing the indels at the right locations since the accuracy of sequence alignments dictate model qualities in homology modeling.

摘要

背景

蛋白质序列插入/缺失(indels)可在进化过程中或通过可变剪接(AS)引入。可变剪接是一种重要的生物学现象,被认为是真核生物中扩展结构和功能多样性的主要方式。了解由于插入缺失导致的结构变化对于我们理解蛋白质结构和功能的进化至关重要。此外,它可以帮助我们探究可变剪接的进化和功能异构体的多样性。然而,关于插入缺失,特别是涉及核心二级结构的插入缺失对蛋白质结构折叠的影响,我们知之甚少。我们研究的长期目标是准确预测蛋白质AS异构体结构。作为朝着这个目标迈出的第一步,我们通过在蛋白质数据库(PDB)中挖掘高度同源的蛋白质,对短内部插入缺失引起的结构变化进行了系统分析。

结果

我们从高度同源的蛋白质对中编制了一个短内部插入缺失(2 - 40个氨基酸)的非冗余数据集,并分析了插入缺失的序列和结构特征。我们发现约三分之一的插入缺失残基处于无序状态,且大多数残基暴露于溶剂中,这表明这些插入缺失通常位于蛋白质表面。尽管数据集中自然发生的插入缺失比人工构建的少,但数据集中“自然”插入缺失和“所有”插入缺失在氨基酸频率和二级结构类型方面没有统计学上的显著差异。结构比较表明,数据集中所有具有短内部插入缺失的蛋白质对都保留了结构折叠,约85%的蛋白质对的全局均方根偏差(RMSDs)为2Å或更小,这表明蛋白质结构倾向于保守并且能够容忍短插入和缺失。少数具有高RMSD值的蛋白质对是由于蛋白质的相对结构域位置导致的,这可能是由于蛋白质固有的动态性质。

结论

分析表明蛋白质结构具有容忍短插入缺失的“可塑性”。这项研究可以为通过将插入缺失放置在正确位置来建模蛋白质AS异构体结构和具有插入缺失的同源蛋白质提供有价值的指导,因为序列比对的准确性决定了同源建模中的模型质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8e0/2924343/5bde61af615b/1472-6807-10-24-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验