Suppr超能文献

碳质纳米多孔分子筛的微观模型——分子限域空间中的异常输运。

Microscopic model of carbonaceous nanoporous molecular sieves--anomalous transport in molecularly confined spaces.

机构信息

Applied Physics, RMIT University, GPO Box 2476V, Victoria 3001, Australia.

出版信息

Phys Chem Chem Phys. 2010 Oct 7;12(37):11351-61. doi: 10.1039/b926206g. Epub 2010 Aug 5.

Abstract

To model the equilibrium and transport properties of carbonaceous molecular sieves (CMS) (i.e., carbon membranes, coals, activated carbons with ink-bottle pore geometry, etc.) the new microscopic turbostratic carbon pore model (TCPM) is developed. Analysis of experimental Gibbs excess of methane adsorption on Shirasagi CMS 3K-161 at 298 K indicates that investigated CMS is structurally a heterogonous material (i.e., it is composed of slit-shaped and turbostratic carbon nanopores of different sizes). The predicted absolute methane isotherm, total pore volume of 0.22 cm(3) g(-1), enthalpy of methane adsorption of 17.5-18.6 kJ mol(-1) on Shirasagi CMS 3K-161 at 298 K are in good agreement with existing experimental and theoretical data. Applying TCPM, we model the equilibrium and kinetic separation of hydrogen and methane mixtures adsorbed in CMS turbostratic carbon nanopores at infinite dilution and 194.7, 293.2, 313.2, 423.2, and 573.2 K. We found that near ambient temperatures one can reach equilibrium selectivity of methane over hydrogen (CH(4)/H(2)) of 10(2) in the turbostratic carbon nanopores having effective cage sizes of ≈5 Å. Lowering an operating temperature down to the dry ice one increases the equilibrium CH(4)/H(2) selectivity in these nanopores up to 10(3). The kinetic selectivity of hydrogen over several investigated fluids, including: methane, argon, xenon, nitrogen, and carbon dioxide at studied operating conditions does not depend on the size of the carbon nanopore cage. This simply means that the kinetic separation factor is controlled by the size of the carbon nanopore constriction. Taking this into account, we predicted the effective size of the carbon nanopore constriction of real CMS from the experimentally measured kinetic H(2)/CH(4) selectivities at infinite dilution. The high kinetic H(2)/CH(4) selectivity of 10(2)-10(3) corresponds to the effective size of the carbon nanopore constriction of ≤2.958 Å (i.e., lower or equal to the collision diameter of hydrogen molecule). However, decreasing/increasing of the effective size of the carbon nanopore constriction by ≈0.1-0.2 Å exponentially increases/decreases kinetic H(2)/CH(4) separation factor. Finally, we showed that the efficiency of kinetic separation at 298 K and infinite dilution depends on the σ(H(2))/σ(X) and not only on σ(H(2)) (where σ denotes the collision diameter of hydrogen and the mentioned above fluids, respectively).

摘要

为了模拟含碳分子筛(CMS)(即碳膜、煤、具有墨水瓶状孔隙结构的活性炭等)的平衡和输运性质,开发了新的微观乱层碳孔隙模型(TCPM)。对 298 K 下 Shirasagi CMS 3K-161 上甲烷吸附的实验 Gibbs 过剩分析表明,所研究的 CMS 在结构上是一种不均匀的材料(即它由不同大小的狭缝状和乱层碳纳米孔组成)。预测的绝对甲烷等温线、0.22 cm(3) g(-1) 的总孔体积、298 K 下 Shirasagi CMS 3K-161 上甲烷吸附的焓为 17.5-18.6 kJ mol(-1),与现有实验和理论数据吻合较好。应用 TCPM,我们模拟了在无限稀释和 194.7、293.2、313.2、423.2 和 573.2 K 下 CMS 乱层碳纳米孔中吸附的氢气和甲烷混合物的平衡和动力学分离。我们发现,在环境温度附近,在有效笼尺寸约为 5 Å 的乱层碳纳米孔中,可以达到甲烷对氢气(CH(4)/H(2))的平衡选择性为 10(2)。将操作温度降低至干冰温度,可将这些纳米孔中的平衡 CH(4)/H(2)选择性提高到 10(3)。在研究的操作条件下,包括甲烷、氩气、氙气、氮气和二氧化碳在内的几种研究流体的动力学选择性不取决于碳纳米孔笼的大小。这意味着动力学分离因子由碳纳米孔收缩的大小控制。考虑到这一点,我们从无限稀释下实验测量的动力学 H(2)/CH(4)选择性预测了实际 CMS 的碳纳米孔收缩的有效尺寸。高动力学 H(2)/CH(4)选择性为 10(2)-10(3),对应于碳纳米孔收缩的有效尺寸为≤2.958 Å(即等于或小于氢气分子的碰撞直径)。然而,碳纳米孔收缩的有效尺寸增加/减小约 0.1-0.2 Å,会使动力学 H(2)/CH(4)分离因子呈指数增加/减小。最后,我们表明,在 298 K 和无限稀释下的动力学分离效率取决于 σ(H(2))/σ(X),而不仅仅取决于 σ(H(2))(其中 σ 分别表示氢气和上述流体的碰撞直径)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验