Suppr超能文献

α2-抗纤溶酶与纤维蛋白(原)的非共价相互作用:α2-抗纤溶酶结合位点的定位。

Noncovalent interaction of alpha(2)-antiplasmin with fibrin(ogen): localization of alpha(2)-antiplasmin-binding sites.

机构信息

Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.

出版信息

Biochemistry. 2010 Sep 7;49(35):7643-51. doi: 10.1021/bi1010317.

Abstract

Covalent incorporation (cross-linking) of plasmin inhibitor alpha(2)-antiplasmin (alpha(2)-AP) into fibrin clots increases their resistance to fibrinolysis. We hypothesized that alpha(2)-AP may also interact noncovalently with fibrin prior to its covalent cross-linking. To test this hypothesis, we studied binding of alpha(2)-AP to fibrin(ogen) and its fragments by an enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance. The experiments revealed that alpha(2)-AP binds to polymeric fibrin and surface-adsorbed fibrin(ogen), while no binding was observed with fibrinogen in solution. To localize the alpha(2)-AP-binding sites, we studied the interaction of alpha(2)-AP with the fibrin(ogen)-derived D(1), D-D, and E(3) fragments, and the recombinant alphaC region and its constituents, alphaC connector and alphaC domain and its subdomains, which together encompass practically the whole fibrin(ogen) molecule. In the ELISA, alpha(2)-AP bound to immobilized D(1), D-D, alphaC region, alphaC domain, and its C-terminal subdomain. The binding was Lys-independent and was not inhibited by plasminogen or tPA. Furthermore, the affinity of alpha(2)-AP for D-D was significantly increased in the presence of plasminogen, while that to the alphaC domain remained unaffected. Altogether, these results indicate that the fibrin(ogen) D region and the C-terminal subdomain of the alphaC domain contain high-affinity alpha(2)-AP-binding sites that are cryptic in fibrinogen and exposed in fibrin or adsorbed fibrinogen, and the presence of plasminogen facilitates interaction of alpha(2)-AP with the D regions. The discovered noncovalent interaction of alpha(2)-AP with fibrin may contribute to regulation of the initial stage of fibrinolysis and provide proper orientation of the cross-linking sites to facilitate covalent cross-linking of alpha(2)-AP to the fibrin clot.

摘要

纤溶酶抑制剂 α2-抗纤溶酶(α2-AP)与纤维蛋白凝块的共价结合(交联)增加了它们对纤维蛋白溶解的抗性。我们假设 α2-AP 可能在共价交联之前与纤维蛋白非共价相互作用。为了验证这一假设,我们通过酶联免疫吸附试验(ELISA)和表面等离子体共振研究了 α2-AP 与纤维蛋白原及其片段的结合。实验表明,α2-AP 与聚合纤维蛋白和表面吸附的纤维蛋白原结合,而在溶液中与纤维蛋白原没有结合。为了定位 α2-AP 的结合位点,我们研究了 α2-AP 与纤维蛋白原衍生的 D(1)、D-D 和 E(3)片段以及重组 αC 区及其组成部分,即 αC 连接器和 αC 域及其亚域的相互作用,这些区域共同涵盖了几乎整个纤维蛋白原分子。在 ELISA 中,α2-AP 与固定化的 D(1)、D-D、αC 区、αC 域及其 C 末端亚域结合。这种结合不依赖于赖氨酸,也不受纤溶酶原或 tPA 的抑制。此外,在存在纤溶酶原的情况下,α2-AP 与 D-D 的亲和力显著增加,而与 αC 域的亲和力不受影响。总的来说,这些结果表明纤维蛋白原 D 区和 αC 域的 C 末端亚域包含高亲和力的 α2-AP 结合位点,这些结合位点在纤维蛋白原中是隐匿的,在纤维蛋白或吸附的纤维蛋白原中是暴露的,纤溶酶原的存在促进了 α2-AP 与 D 区的相互作用。发现的 α2-AP 与纤维蛋白的非共价相互作用可能有助于调节纤维蛋白溶解的初始阶段,并为 α2-AP 与纤维蛋白凝块的共价交联提供适当的交联位点定向。

相似文献

3
Cross-linking of plasminogen activator inhibitor 2 and alpha 2-antiplasmin to fibrin(ogen).
J Biol Chem. 2000 Aug 11;275(32):24915-20. doi: 10.1074/jbc.M002901200.
4
Identification and characterization of novel lysine-independent apolipoprotein(a)-binding sites in fibrin(ogen) alphaC-domains.
J Biol Chem. 2003 Sep 26;278(39):37154-9. doi: 10.1074/jbc.M305154200. Epub 2003 Jul 9.
9
Direct evidence for specific interactions of the fibrinogen alphaC-domains with the central E region and with each other.
Biochemistry. 2007 Aug 7;46(31):9133-42. doi: 10.1021/bi700944j. Epub 2007 Jul 13.

引用本文的文献

1
Effect of Alpha2-Plasmin Inhibitor C-Terminal Heterogeneity on Clot Lysis and Clot Structure.
Biomolecules. 2025 Aug 5;15(8):1127. doi: 10.3390/biom15081127.
2
A targeted LC MS/MS assay of a health surveillance panel and its application to chronic kidney disease.
bioRxiv. 2025 Mar 16:2025.03.14.643399. doi: 10.1101/2025.03.14.643399.
3
Surface-bound FXIII enhances deposition and straightness of fibrin fibers.
Biophys Rep (N Y). 2025 Mar 24;5(2):100207. doi: 10.1016/j.bpr.2025.100207.
4
Citrullination of α2-antiplasmin is unlikely to contribute to enhanced plasmin generation in COVID-19 pathophysiology.
Res Pract Thromb Haemost. 2023 Aug 30;7(6):102195. doi: 10.1016/j.rpth.2023.102195. eCollection 2023 Aug.
5
PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration.
Int J Nanomedicine. 2023 Feb 3;18:595-610. doi: 10.2147/IJN.S393890. eCollection 2023.
6
Transglutaminase Activities of Blood Coagulant Factor XIII Are Dependent on the Activation Pathways and on the Substrates.
Thromb Haemost. 2023 Apr;123(4):380-392. doi: 10.1055/a-1993-4193. Epub 2022 Dec 6.
8
The Story of the Fibrin(ogen) αC-Domains: Evolution of Our View on Their Structure and Interactions.
Thromb Haemost. 2022 Aug;122(8):1265-1278. doi: 10.1055/a-1719-5584. Epub 2021 Dec 13.
10
Fibrin(ogen) as a Therapeutic Target: Opportunities and Challenges.
Int J Mol Sci. 2021 Jun 28;22(13):6916. doi: 10.3390/ijms22136916.

本文引用的文献

1
Structure, stability, and interaction of the fibrin(ogen) alphaC-domains.
Biochemistry. 2009 Dec 29;48(51):12191-201. doi: 10.1021/bi901640e.
2
Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance.
Haemophilia. 2008 Nov;14(6):1250-4. doi: 10.1111/j.1365-2516.2008.01766.x.
3
Recommendations for nomenclature on fibrinogen and fibrin.
J Thromb Haemost. 2009 Feb;7(2):355-9. doi: 10.1111/j.1538-7836.2008.03242.x. Epub 2008 Nov 25.
4
New insights into the molecular mechanisms of the fibrinolytic system.
J Thromb Haemost. 2009 Jan;7(1):4-13. doi: 10.1111/j.1538-7836.2008.03220.x. Epub 2008 Nov 8.
6
X-ray crystal structure of the fibrinolysis inhibitor alpha2-antiplasmin.
Blood. 2008 Feb 15;111(4):2049-52. doi: 10.1182/blood-2007-09-114215. Epub 2007 Dec 6.
7
Why alpha-antiplasmin must be converted to a derivative form for optimal function.
J Thromb Haemost. 2007 Oct;5(10):2095-104. doi: 10.1111/j.1538-7836.2007.02707.x.
9
Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein.
Blood. 2006 Feb 15;107(4):1397-404. doi: 10.1182/blood-2005-08-3452. Epub 2005 Oct 13.
10
The past, present and future of plasmin inhibitor.
Thromb Res. 2005;116(6):455-64. doi: 10.1016/j.thromres.2004.12.019. Epub 2005 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验