Suppr超能文献

锯齿形边缘三角形石墨烯分子的化学成键和磁性中的边缘与内部。

Edge versus interior in the chemical bonding and magnetism of zigzag edged triangular graphene molecules.

机构信息

Center for Computational Materials Science, Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai, Japan.

出版信息

J Chem Phys. 2010 Jul 28;133(4):044708. doi: 10.1063/1.3457673.

Abstract

Ab initio density functional theory calculations show that the CC bond lengths fall into three distinct groups: core, apex, and edge, irrespective of whether the molecular center is a single atom or a C(6)-ring. The core, with a geometry that approximates infinite graphene, extends to the penultimate triangular row of carbon atoms, except in the vicinity of an apex. Impressed on the core bonds starting at the center is a small increasing length oscillation. The perimeter CC bonds joined at the apex are the shortest in the molecule. The edge carbon atoms are separated from interior atoms by the longest bonds in the molecule. The spin density localized primarily on edge (not apex) carbons with attached hydrogen (A-sublattice) is likely the highest attainable in any graphene molecule. The CC bonds in the high spin section of the edges are uniform in length and longer than perimeter CC bonds in the zigzag edged linear acenes, hexangulenes, annulenes, and benzene. This is attributed to the large number of edge localized nonbonding molecular orbitals (NBMOs) that sequestered pi-charge making it unavailable for bonding.

摘要

从头算密度泛函理论计算表明,CC 键长分为三组:核心、顶点和边缘,无论分子中心是单个原子还是 C(6)环。核心的几何形状近似于无限的石墨烯,延伸到倒数第二排的碳原子,除了在顶点附近。从中心开始在核心键上施加一个小的长度增加的振动。在顶点连接的周界 CC 键在分子中最短。边缘碳原子与内部原子之间的键最长。自旋密度主要定域在边缘(非顶点)碳原子上,带有附加的氢(A 亚晶格),这可能是任何石墨烯分子中所能达到的最高值。边缘高自旋部分的 CC 键长度均匀,比锯齿形边缘线性并五苯、六并苯、轮烯和苯中的周界 CC 键长。这归因于大量的边缘局域非键分子轨道(NBMO)隔离了π电荷,使其无法用于成键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验