Suppr超能文献

高速双朗缪尔探针

High-speed dual Langmuir probe.

作者信息

Lobbia Robert B, Gallimore Alec D

机构信息

Department of Aerospace Engineering, Plasmadynamics and Electric Propulsion Laboratory, The University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Rev Sci Instrum. 2010 Jul;81(7):073503. doi: 10.1063/1.3455201.

Abstract

In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz-near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100,000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n(e) from (1x10(15))-(5x10(16)) m(-3), electron temperature T(e) from 1 to 3.5 eV, and plasma potential V(p) from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster "breathing mode" ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n(e)(t), T(e)(t), and V(p)(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current fluctuations and the corresponding plasma density fluctuations agree well with expected ion transit-times observed with distinct plasma waves traveling away from the thruster at velocities >10 km/s.

摘要

为了在时间上解析湍流等离子体放电的电子密度、电子温度和等离子体电势,已开发出一种独特的高速双朗缪尔探针(HDLP)。一个传统的圆柱形几何形状的单朗缪尔探针(暴露于等离子体中)与附近的电容和噪声补偿零探针(完全与等离子体绝缘)同时扫描,以实现微秒时间尺度上的偏置扫描速率。传统的薄鞘层朗缪尔探针理论用于解释收集到的探针数据。给出了扫描速率为100 kHz时的数据;然而,所开发的系统能够在1 MHz运行——接近在所研究的等离子体条件下应用的静电朗缪尔探针理论的上限。使用简单的电子设备进行探针偏置驱动和电流测量,以80 dB的信噪比测量直流到1 MHz带宽,收集了大量(在352个空间位置的每一个位置进行100,000次扫描)连续的湍流等离子体特性。使用HDLP系统在现代霍尔效应推力器下游进行近场和远场羽流测量,其中时间平均等离子体特性呈现出近似范围:电子密度n(e)为(1×10(15))-(5×10(16)) m(-3),电子温度T(e)为1至3.5 eV,等离子体电势V(p)为5至15 V。200 V(恒定阳极电势)和2 A(平均放电电流)的推力器放电在19 kHz处显示出强烈的、峰峰值为2.2 A的电流振荡,这是推力器“呼吸模式”电离不稳定性的特征。大多数霍尔推力器的放电电流波动幅度都很大,但HDLP系统揭示了在整个羽流中n(e)(t)、T(e)(t)和V(p)(t)中存在相同的19 kHz波动,峰峰值除以平均等离子体特性平均为94%。放电电流波动与相应等离子体密度波动之间的传播延迟与以大于10 km/s的速度远离推力器传播的不同等离子体波所观察到的预期离子渡越时间非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验