Suppr超能文献

高亲和力蛋氨酸渗透酶的突变有助于酿酒酵母中硒代蛋氨酸蛋白的生产。

Mutation of high-affinity methionine permease contributes to selenomethionyl protein production in Saccharomyces cerevisiae.

机构信息

Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.

出版信息

Appl Environ Microbiol. 2010 Oct;76(19):6351-9. doi: 10.1128/AEM.01026-10. Epub 2010 Aug 6.

Abstract

The production of selenomethionine (SeMet) derivatives of recombinant proteins allows phase determination by single-wavelength or multiwavelength anomalous dispersion phasing in X-ray crystallography, and this popular approach has permitted the crystal structures of numerous proteins to be determined. Although yeast is an ideal host for the production of large amounts of eukaryotic proteins that require posttranslational modification, the toxic effects of SeMet often interfere with the preparation of protein derivatives containing this compound. We previously isolated a mutant strain (SMR-94) of the methylotrophic yeast Pichia pastoris that is resistant to both SeMet and selenate and demonstrated its applicability for the production of proteins suitable for X-ray crystallographic analysis. However, the molecular basis for resistance to SeMet by the SMR-94 strain remains unclear. Here, we report the characterization of SeMet-resistant mutants of Saccharomyces cerevisiae and the identification of a mutant allele of the MUP1 gene encoding high-affinity methionine permease, which confers SeMet resistance. Although the total methionine uptake by the mup1 mutant (the SRY5-7 strain) decreased to 47% of the wild-type level, it was able to incorporate SeMet into the overexpressed epidermal growth factor peptide with 73% occupancy, indicating the importance of the moderate uptake of SeMet by amino acid permeases other than Mup1p for the alleviation of SeMet toxicity. In addition, under standard culture conditions, the mup1 mutant showed higher productivity of the SeMet derivative relative to other SeMet-resistant mutants. Based on these results, we conclude that the mup1 mutant would be useful for the preparation of selenomethionyl proteins for X-ray crystallography.

摘要

硒代蛋氨酸(SeMet)衍生物的重组蛋白的生产允许在 X 射线晶体学中通过单波长或多波长反常散射相位测定来进行相确定,这种流行的方法已经允许许多蛋白质的晶体结构被确定。尽管酵母是生产需要翻译后修饰的大量真核蛋白质的理想宿主,但硒代蛋氨酸的毒性作用经常干扰含有这种化合物的蛋白质衍生物的制备。我们之前分离了一株甲醇营养酵母毕赤酵母(Pichia pastoris)的突变株(SMR-94),它对硒代蛋氨酸和硒酸盐都有抗性,并证明了它在生产适合 X 射线晶体学分析的蛋白质方面的适用性。然而,SMR-94 菌株对硒代蛋氨酸抗性的分子基础仍不清楚。在这里,我们报告了酿酒酵母(Saccharomyces cerevisiae)的硒代蛋氨酸抗性突变体的特征,并鉴定了编码高亲和力蛋氨酸转运蛋白的 MUP1 基因的突变等位基因,该基因赋予了硒代蛋氨酸抗性。尽管 mup1 突变体(SRY5-7 菌株)的总蛋氨酸摄取量下降到野生型水平的 47%,但它能够将硒代蛋氨酸掺入过量表达的表皮生长因子肽中,占据 73%的位置,这表明除了 Mup1p 之外,氨基酸转运蛋白对中等摄取硒代蛋氨酸对于减轻硒代蛋氨酸毒性非常重要。此外,在标准培养条件下,mup1 突变体相对于其他硒代蛋氨酸抗性突变体表现出更高的硒代蛋氨酸衍生物生产力。基于这些结果,我们得出结论,mup1 突变体将有助于制备用于 X 射线晶体学的硒代蛋氨酸蛋白。

相似文献

1
Mutation of high-affinity methionine permease contributes to selenomethionyl protein production in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2010 Oct;76(19):6351-9. doi: 10.1128/AEM.01026-10. Epub 2010 Aug 6.
2
Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17682-7. doi: 10.1073/pnas.0805642105. Epub 2008 Nov 11.
3
Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae.
J Agric Food Chem. 2008 Dec 24;56(24):11792-9. doi: 10.1021/jf8018479.
4
Use of novel selenomethionine-resistant yeast to produce selenomethionyl protein suitable for structural analysis.
FEMS Yeast Res. 2009 May;9(3):439-45. doi: 10.1111/j.1567-1364.2009.00484.x. Epub 2009 Jan 29.
5
Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing.
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6678-83. doi: 10.1073/pnas.0610337104. Epub 2007 Apr 10.
6
Trans-sulfuration Pathway Seleno-amino Acids Are Mediators of Selenomethionine Toxicity in Saccharomyces cerevisiae.
J Biol Chem. 2015 Apr 24;290(17):10741-50. doi: 10.1074/jbc.M115.640375. Epub 2015 Mar 5.
9
Production of selenomethionine-labeled recombinant human neutrophil collagenase in Escherichia coli.
J Biotechnol. 1995 Apr 15;39(2):119-28. doi: 10.1016/0168-1656(94)00149-7.
10
Development of stable isotope and selenomethionine labeling methods for proteins expressed in Pseudomonas fluorescens.
Protein Expr Purif. 2009 May;65(1):57-65. doi: 10.1016/j.pep.2008.12.012. Epub 2008 Dec 30.

引用本文的文献

1
No Chance to Survive: -CBP-PepII Synthetic Peptide Acts on by Multiple Mechanisms of Action.
Antibiotics (Basel). 2023 Feb 12;12(2):378. doi: 10.3390/antibiotics12020378.
2
Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of epidemic strains.
Virulence. 2022 Dec;13(1):1455-1470. doi: 10.1080/21505594.2022.2116160.
3
Methionine and Glycine Stabilize Mitochondrial Activity in Sake Yeast During Ethanol Fermentation.
Food Technol Biotechnol. 2019 Dec;57(4):535-543. doi: 10.17113/ftb.57.04.19.5665.
5
Trans-sulfuration Pathway Seleno-amino Acids Are Mediators of Selenomethionine Toxicity in Saccharomyces cerevisiae.
J Biol Chem. 2015 Apr 24;290(17):10741-50. doi: 10.1074/jbc.M115.640375. Epub 2015 Mar 5.
6
Cytotoxic mechanism of selenomethionine in yeast.
J Biol Chem. 2012 Mar 23;287(13):10032-10038. doi: 10.1074/jbc.M111.324244. Epub 2012 Feb 6.

本文引用的文献

1
Use of novel selenomethionine-resistant yeast to produce selenomethionyl protein suitable for structural analysis.
FEMS Yeast Res. 2009 May;9(3):439-45. doi: 10.1111/j.1567-1364.2009.00484.x. Epub 2009 Jan 29.
2
Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17682-7. doi: 10.1073/pnas.0805642105. Epub 2008 Nov 11.
3
High-throughput crystallization-to-structure pipeline at RIKEN SPring-8 Center.
J Struct Funct Genomics. 2008 Dec;9(1-4):21-8. doi: 10.1007/s10969-008-9042-y. Epub 2008 Aug 2.
4
Crystallization screening test for the whole-cell project on Thermus thermophilus HB8.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Jun 1;64(Pt 6):487-91. doi: 10.1107/S1744309108013572. Epub 2008 May 30.
6
Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae.
Mutat Res. 2008 Feb 1;638(1-2):1-10. doi: 10.1016/j.mrfmmm.2007.08.009. Epub 2007 Aug 22.
7
Production of selenomethionyl-derivatized proteins in baculovirus-infected insect cells.
Protein Sci. 2007 Sep;16(9):2023-9. doi: 10.1110/ps.072931407. Epub 2007 Jul 27.
8
Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing.
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6678-83. doi: 10.1073/pnas.0610337104. Epub 2007 Apr 10.
9
Highly efficient selenomethionine labeling of recombinant proteins produced in mammalian cells.
Protein Sci. 2006 Aug;15(8):2008-13. doi: 10.1110/ps.062244206. Epub 2006 Jul 5.
10
Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor.
J Biol Chem. 2006 Apr 28;281(17):11744-54. doi: 10.1074/jbc.M600037200. Epub 2006 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验