Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, People's Republic of China.
J Physiol Sci. 2010 Nov;60(6):389-97. doi: 10.1007/s12576-010-0107-x. Epub 2010 Aug 7.
Vasoactive intestinal polypeptide (VIP), an endogenous neuropeptide normally present in lungs and other organs, relaxes pulmonary arteries (PAs) in different species, whereas the underlying mechanisms are still not fully understood. The aim of this study, therefore, is to investigate the signal transduction of VIP in the relaxation of isolated rat PA rings. The isometric tension of the rings was studied in vitro with force-electricity transducers. In endothelium-intact (EI) rings, VIP elicited concentration-dependent relaxation after the rings were pre-contracted by phenylephrine. A similar effect, though smaller, was observed in endothelium-denuded (ED) rings. Inhibition of the endothelial nitric oxide synthase (eNOS) by NG-nitro-L-arginine methyl ester diminished the VIP-induced vasodilatation of PA rings. The VIP-induced vasorelaxation was markedly reduced by the inhibition of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway with wortmannin and LY294002, respectively, which was seen in EI rings, but not in ED rings. Western blot analysis revealed that VIP increased the phosphorylation of eNOS at Ser 1177, but did not affect the overall expression of eNOS. In ED rings, the PKA inhibitor H-89 and K(ATP) channel inhibitor glibenclamide almost totally abolished the vasodilatation effect of VIP. The results suggested that the vasodilatation effect of VIP on rat PAs is mediated by both vascular endothelium and smooth muscle, involving respectively the PI3K/Akt-eNOS pathway and the PKA-K(ATP) channel pathway.
血管活性肠肽(VIP)是一种内源性神经肽,通常存在于肺部和其他器官中,可使不同物种的肺动脉松弛,但其潜在机制尚不完全清楚。因此,本研究旨在探讨 VIP 在离体大鼠肺动脉环松弛中的信号转导。使用力-电换能器体外研究环的等长张力。在完整内皮(EI)环中,VIP 在环被苯肾上腺素预收缩后引发浓度依赖性松弛。在去内皮(ED)环中观察到类似但较小的作用。内皮型一氧化氮合酶(eNOS)的抑制剂 NG-硝基-L-精氨酸甲酯(L-NAME)减弱了 VIP 诱导的 PA 环血管舒张作用。VIP 诱导的血管舒张作用被磷脂酰肌醇 3-激酶/蛋白激酶 B(PI3K/Akt)信号通路的抑制剂wortmannin 和 LY294002 分别显著抑制,这种作用仅见于 EI 环,而不在 ED 环中出现。Western blot 分析表明,VIP 增加了 eNOS 在 Ser 1177 的磷酸化,但不影响 eNOS 的总体表达。在 ED 环中,PKA 抑制剂 H-89 和 KATP 通道抑制剂格列本脲几乎完全消除了 VIP 的血管舒张作用。结果表明,VIP 对大鼠肺动脉的血管舒张作用是由血管内皮和平滑肌介导的,分别涉及 PI3K/Akt-eNOS 通路和 PKA-KATP 通道通路。