School of Mechanical, Aerospace, Chemical and Materials Engineering, Arizona State University, Tempe, Arizona 85287, USA.
Langmuir. 2010 Aug 17;26(16):13044-7. doi: 10.1021/la102171k.
We continue to develop two-particle interfacial microrheology and have applied the technique to study the interfacial viscoelastic properties of immiscible poly(dimethylsiloxane) (PDMS)-poly(ethylene glycol) (PEG) interfaces. The interfacial storage and loss moduli are measured over a wide frequency range: at low frequencies, the interfaces are dominated by viscous responses whereas elasticity dominates at high frequencies. The zero-shear interfacial viscosity, estimated following the Cox-Merz rule and Cross model, falls between the bulk viscosities of the two individual polymers. Surprisingly, the interfacial relaxation time, calculated from the crossover of the storage and loss moduli, is observed to be an order of magnitude larger than that of the PDMS bulk polymers. The effects of tracer particle surface chemistry and size have also been investigated and show minimum influences on two-particle interfacial microrheology.
我们继续发展双粒子界面微流变学,并将该技术应用于研究不混溶的聚二甲基硅氧烷(PDMS)-聚乙二醇(PEG)界面的界面粘弹性性质。在很宽的频率范围内测量界面的储存和损耗模量:在低频下,界面主要表现为粘性响应,而在高频下弹性占主导地位。根据 Cox-Merz 规则和 Cross 模型估算的零剪切界面粘度介于两种单体聚合物的本体粘度之间。令人惊讶的是,从储存和损耗模量的交越处计算得到的界面松弛时间比 PDMS 本体聚合物的松弛时间大一个数量级。还研究了示踪粒子表面化学和尺寸的影响,结果表明它们对双粒子界面微流变学的影响最小。