Suppr超能文献

一种用于实时研究细胞凋亡的原型微流控平台,用于产生逐步浓度梯度。

A prototypic microfluidic platform generating stepwise concentration gradients for real-time study of cell apoptosis.

出版信息

Biomicrofluidics. 2010 Apr 16;4(2):024101. doi: 10.1063/1.3398319.

Abstract

This work describes the development of a prototypic microfluidic platform for the generation of stepwise concentration gradients of drugs. A sensitive apoptotic analysis method is integrated into this microfluidic system for studying apoptosis of HeLa cells under the influence of anticancer drug, etoposide, with various concentrations in parallel; it measures the yellow fluorescent proteincyan fluorescent protein fluorescence resonance energy transfer (FRET) signal that responds to the activation of caspase-3, an indicator of cell apoptosis. Sets of microfluidic valves on the chip generate stepwise concentration gradient of etoposide in various cell-culture microchambers. The FRET signals from multiple chambers are simultaneously monitored under a fluorescent microscope for long-time observation and the on-chip results are compared with those from 96-well plate study and the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The microfluidic platform shows several advantages including high-throughput capacity, low drug consumption, and high sensitivity.

摘要

这项工作描述了一种用于生成药物逐步浓度梯度的原型微流控平台的开发。一种敏感的细胞凋亡分析方法被整合到这个微流控系统中,用于研究在不同浓度抗癌药物依托泊苷的影响下,宫颈癌 HeLa 细胞的凋亡;它测量了对 caspase-3 激活有反应的黄色荧光蛋白-青色荧光蛋白荧光共振能量转移(FRET)信号,caspase-3 是细胞凋亡的一个指标。芯片上的微流控阀在多个细胞培养微室中产生依托泊苷的逐步浓度梯度。在荧光显微镜下同时监测多个腔室的 FRET 信号,进行长时间观察,并将芯片上的结果与 96 孔板研究和噻唑蓝(MTT)检测法的结果进行比较。该微流控平台具有高通量、低药物消耗和高灵敏度等优点。

相似文献

3
A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay.
Lab Chip. 2011 Oct 7;11(19):3305-12. doi: 10.1039/c1lc20123a. Epub 2011 Aug 15.
4
Microfluidic Systems with Embedded Cell Culture Chambers for High-Throughput Biological Assays.
ACS Appl Bio Mater. 2020 Oct 19;3(10):6661-6671. doi: 10.1021/acsabm.0c00439. Epub 2020 Aug 17.
5
A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria.
Anal Bioanal Chem. 2021 Feb;413(4):1127-1136. doi: 10.1007/s00216-020-03076-8. Epub 2021 Jan 8.
6
Parallel microfluidic networks for studying cellular response to chemical modulation.
J Biotechnol. 2007 Sep 15;131(3):286-92. doi: 10.1016/j.jbiotec.2007.06.014. Epub 2007 Jun 27.
7
Systematic Investigation of Insulin Fibrillation on a Chip.
Molecules. 2020 Mar 18;25(6):1380. doi: 10.3390/molecules25061380.
9
Microfluidic geometric metering-based multi-reagent mixture generator for robust live cell screening array.
Biomed Microdevices. 2014 Dec;16(6):887-96. doi: 10.1007/s10544-014-9893-x.
10
An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation.
Analyst. 2020 Oct 21;145(20):6447-6455. doi: 10.1039/d0an01229g. Epub 2020 Sep 7.

引用本文的文献

1
A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models.
PLoS Biol. 2022 May 26;20(5):e3001624. doi: 10.1371/journal.pbio.3001624. eCollection 2022 May.
2
A membrane-based microfluidic device for mechano-chemical cell manipulation.
Biomed Microdevices. 2016 Apr;18(2):31. doi: 10.1007/s10544-016-0040-8.
3
Perspective: Flicking with flow: Can microfluidics revolutionize the cancer research?
Biomicrofluidics. 2013 Jan 31;7(1):11811. doi: 10.1063/1.4789750. eCollection 2013.
4
Liquid gradient in two-dimensional matrix for high throughput screening.
Biomicrofluidics. 2013 Dec 10;7(6):64116. doi: 10.1063/1.4847815. eCollection 2013.
5
Microfluidic device for generating a stepwise concentration gradient on a microwell slide for cell analysis.
Biomicrofluidics. 2013 Dec 10;7(6):64115. doi: 10.1063/1.4846435. eCollection 2013.
6
Microfluidic devices for cell cultivation and proliferation.
Biomicrofluidics. 2013 Oct 29;7(5):51502. doi: 10.1063/1.4826935. eCollection 2013.
8
A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson's disease.
Biomicrofluidics. 2011 Jun;5(2):22214. doi: 10.1063/1.3580756. Epub 2011 Jun 29.
9
Whole-Teflon microfluidic chips.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8162-6. doi: 10.1073/pnas.1100356108. Epub 2011 May 2.
10
Stem cells in microfluidics.
Biomicrofluidics. 2011 Mar 30;5(1):13401. doi: 10.1063/1.3528299.

本文引用的文献

1
A screw-actuated pneumatic valve for portable, disposable microfluidics.
Lab Chip. 2009 Feb 7;9(3):469-72. doi: 10.1039/b811526e. Epub 2008 Nov 7.
2
A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment.
Lab Chip. 2008 Sep;8(9):1507-15. doi: 10.1039/b803533d. Epub 2008 Jul 16.
4
Endothelial cell polarization and chemotaxis in a microfluidic device.
Lab Chip. 2008 Aug;8(8):1292-9. doi: 10.1039/b719788h. Epub 2008 May 30.
6
Three-dimensional cellular microarray for high-throughput toxicology assays.
Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):59-63. doi: 10.1073/pnas.0708756105. Epub 2007 Dec 26.
7
Cell-based high content screening using an integrated microfluidic device.
Lab Chip. 2007 Dec;7(12):1696-704. doi: 10.1039/b711513j. Epub 2007 Oct 8.
8
High-density microfluidic arrays for cell cytotoxicity analysis.
Lab Chip. 2007 Jun;7(6):740-5. doi: 10.1039/b618734j. Epub 2007 Apr 4.
10
Viability study of HL60 cells in contact with commonly used microchip materials.
Electrophoresis. 2006 Dec;27(24):5073-80. doi: 10.1002/elps.200600203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验