Department of Chemistry, Building 207, and Nano*DTU, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Phys Chem Chem Phys. 2010 Sep 14;12(34):9999-10011. doi: 10.1039/c0cp01021a. Epub 2010 Aug 10.
We have explored the adsorption of zinc-free human insulin on the three low-index single-crystalline Au(111)-, Au(100)- and Au(110)-surfaces in aqueous buffer (KH(2)PO(4), pH 5) by a combination of electrochemical scanning tunnelling microscopy (in situ STM) at single-molecule resolution and linear sweep, LSV, cyclic, CV, and square wave (SQWV) voltammetry.Multifarious electrochemical patterns were observed. Most attention was given to reductive desorption caused by insulin binding to the Au-surfaces via up to three disulfide groups per insulin monomer, presumably converted to single Au-S links. SQWV suggested the Au-S bond strength order Au(111) > Au(110) > Au(100) based on the reductive desorption potentials. The voltammetric diversity was paralleled by different in situ STM insulin adsorption modes on the three surfaces. Single-molecule resolution was achieved in all cases. The coverage followed the order Au(110) > Au(100) > Au(111) and differs from the reductive desorption order that records the Au-S bonding element. Evenly distributed single molecules were scattered over large Au(111)-terraces, with intriguing molecular arrays disclosed near the terrace edges. In comparison, high-density molecular scale structures were observed both over the terraces and across terrace edges on Au(100). Larger rectangular structures also appeared (8-12% coverage). These are Au-islands from the lift of the reconstruction. Notably, 10 x 10 nm(2) patches of highly ordered much smaller structures, possibly from insulin decomposition emerged sporadically within the dense insulin adlayer. Insulin adsorbed in highest coverage on the Au(110) and followed the directional surface topology with insulin molecules aligned in the Au(110)-surface grooves, occasionally "spilling over" and merging into larger structures.Adsorption, Au-S binding, and insulin unfolding are all parts of insulin surface behaviour and reflected in both voltammetry and in situ STM. In spite of these complications, the data show that molecular scale resolution has been achieved and offer other perspectives of insulin surface science such as single-molecule mapping of the insulin monomer/dimer-hexamer interconversion.
我们通过电化学扫描隧道显微镜(原位 STM)在单分子分辨率下结合线性扫描、LSV、循环、CV 和方波(SQWV)伏安法,研究了锌游离人胰岛素在水溶液缓冲液(KH2PO4,pH5)中在三种低指数单晶金(111)、(100)和(110)表面上的吸附。观察到多种电化学模式。最受关注的是胰岛素通过每个胰岛素单体上最多三个二硫键与 Au 表面结合导致的还原解吸,推测其转化为单个 Au-S 键。基于还原解吸电位,SQWV 表明 Au-S 键强度顺序为 Au(111)>Au(110)>Au(100)。三种表面的不同原位 STM 胰岛素吸附模式与伏安多样性相平行。在所有情况下都实现了单分子分辨率。覆盖度遵循 Au(110)>Au(100)>Au(111)的顺序,与记录 Au-S 键合元素的还原解吸顺序不同。均匀分布的单个分子散布在大的 Au(111)台地上,在台地边缘附近显示出有趣的分子排列。相比之下,在 Au(100)上,无论是在台地上还是在台地边缘上,都观察到高密度的分子尺度结构。较大的矩形结构也出现了(8-12%的覆盖率)。这些是由于重构抬起而产生的 Au 岛。值得注意的是,在密集的胰岛素吸附层内,偶尔会出现高度有序的较小结构的 10×10nm2补丁,可能来自胰岛素的分解。胰岛素在 Au(110)上的吸附覆盖率最高,并遵循表面定向拓扑,胰岛素分子在 Au(110)表面的沟槽中排列,偶尔会“溢出”并合并成较大的结构。吸附、Au-S 键合和胰岛素展开都是胰岛素表面行为的一部分,这在伏安法和原位 STM 中都有体现。尽管存在这些复杂性,但数据表明已经实现了分子尺度分辨率,并提供了胰岛素表面科学的其他视角,例如胰岛素单体/二聚体-六聚体相互转化的单分子映射。