Suppr超能文献

鉴定酿酒酵母细胞表面暴露的反应性半胱氨酸残基。

Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, USA.

出版信息

Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.

Abstract

Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected by it is limited. Here, we describe proteomic approaches to characterize proteins that contain reactive thiols and methods to identify redox Cys in these proteins. Using Saccharomyces cerevisiae as a eukaryotic model organism, we identified 284 proteins with exposed reactive Cys and determined the identities of 185 of these residues. We then characterized subsets of these proteins as in vitro targets of major cellular thiol oxidoreductases, thioredoxin and glutaredoxin, and found that these enzymes can control the redox state of a significant number of thiols in target proteins. We further examined common features of exposed reactive Cys and compared them with an unbiased control set of Cys using computational approaches. This analysis (i) validated the efficacy of targeting exposed Cys in proteins in their native, folded state, (ii) quantified the proportion of targets that can be redox regulated via thiol oxidoreductase systems, and (iii) revealed the theoretical range of the experimental approach with regard to protein abundance and physicochemical properties of reactive Cys. From these analyses, we estimate that approximately one-fourth of exposed Cys in the yeast proteome can be regarded as functional sites, either subject to regulation by thiol oxidoreductases or involved in structural disulfides and metal binding.

摘要

许多细胞过程都受到氧化还原调节的影响,而通过反应性半胱氨酸(Cys)残基发挥作用的硫醇依赖性氧化还原控制是氧化还原调节的主要机制之一。然而,关于提供硫醇氧化还原调节或受其影响的蛋白质组的信息是有限的。在这里,我们描述了用于表征含有反应性巯基的蛋白质的蛋白质组学方法,以及用于鉴定这些蛋白质中氧化还原 Cys 的方法。我们使用酿酒酵母作为真核模型生物,鉴定了 284 种具有暴露反应性 Cys 的蛋白质,并确定了其中 185 个残基的身份。然后,我们将这些蛋白质的子集作为主要细胞硫氧还蛋白和谷氧还蛋白的体外靶标进行了特征描述,发现这些酶可以控制靶蛋白中许多巯基的氧化还原状态。我们进一步研究了暴露反应性 Cys 的共同特征,并使用计算方法将其与无偏 Cys 对照组进行了比较。该分析(i)验证了在天然折叠状态下靶向蛋白质中暴露 Cys 的有效性,(ii)量化了可通过硫氧还蛋白氧化还原酶系统进行氧化还原调节的靶标比例,以及(iii)揭示了实验方法在蛋白质丰度和反应性 Cys 的物理化学性质方面的理论范围。从这些分析中,我们估计,酵母蛋白质组中约有四分之一的暴露 Cys 可以被视为功能位点,要么受到硫氧还蛋白氧化还原酶的调节,要么参与结构二硫键和金属结合。

相似文献

1
Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.
Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.
2
A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues.
PLoS Comput Biol. 2009 May;5(5):e1000383. doi: 10.1371/journal.pcbi.1000383. Epub 2009 May 8.
4
Redox potentials of active-site bis(cysteinyl) fragments of thiol-protein oxidoreductases.
Biochemistry. 1993 Jul 27;32(29):7488-95. doi: 10.1021/bi00080a021.
5
Thiol redox homeostasis in neurodegenerative disease.
Redox Biol. 2015 Aug;5:186-194. doi: 10.1016/j.redox.2015.04.004. Epub 2015 Apr 22.
6
Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.
Redox Biol. 2019 Feb;21:101049. doi: 10.1016/j.redox.2018.11.007. Epub 2018 Nov 16.
8
The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
J Biol Chem. 2006 Apr 14;281(15):10420-30. doi: 10.1074/jbc.M513346200. Epub 2006 Jan 17.
10
Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker.
Free Radic Biol Med. 2016 Dec;101:356-366. doi: 10.1016/j.freeradbiomed.2016.10.506. Epub 2016 Nov 2.

引用本文的文献

1
Arsenic binds to nuclear transport factors and disrupts nucleocytoplasmic transport.
J Cell Sci. 2025 Aug 15;138(16). doi: 10.1242/jcs.263889.
4
Direct binding of arsenicals to nuclear transport factors disrupts nucleocytoplasmic transport.
bioRxiv. 2025 Jan 15:2025.01.13.632748. doi: 10.1101/2025.01.13.632748.
5
Redox regulation of proteostasis.
J Biol Chem. 2024 Dec;300(12):107977. doi: 10.1016/j.jbc.2024.107977. Epub 2024 Nov 8.
6
Distinguishable short-term effects of tea and water drinking on human saliva redox.
NPJ Sci Food. 2024 Apr 22;8(1):22. doi: 10.1038/s41538-024-00266-x.
7
Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions.
Life Sci Alliance. 2024 Feb 21;7(5). doi: 10.26508/lsa.202302300. Print 2024 May.
8
Modular Diazo Compound for the Bioreversible Late-Stage Modification of Proteins.
J Am Chem Soc. 2023 Mar 29;145(12):6615-6621. doi: 10.1021/jacs.2c11325. Epub 2023 Mar 15.
9
The Structure of Blood Coagulation Factor XIII Is Adapted to Oxidation.
Biomolecules. 2020 Jun 17;10(6):914. doi: 10.3390/biom10060914.
10
Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker.
Free Radic Biol Med. 2016 Dec;101:356-366. doi: 10.1016/j.freeradbiomed.2016.10.506. Epub 2016 Nov 2.

本文引用的文献

1
Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation.
J Mol Biol. 2010 Jan 29;395(4):844-59. doi: 10.1016/j.jmb.2009.10.042. Epub 2009 Oct 23.
2
Protein S-nitrosylation in health and disease: a current perspective.
Trends Mol Med. 2009 Sep;15(9):391-404. doi: 10.1016/j.molmed.2009.06.007. Epub 2009 Aug 31.
4
NO signals in the haze: nitric oxide signalling in plant defence.
Curr Opin Plant Biol. 2009 Aug;12(4):451-8. doi: 10.1016/j.pbi.2009.05.012. Epub 2009 Jul 14.
5
Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.
J Biol Chem. 2009 Aug 14;284(33):21863-21871. doi: 10.1074/jbc.M109.000489. Epub 2009 Jun 19.
6
The glucanosyltransferase Gas1 functions in transcriptional silencing.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11224-9. doi: 10.1073/pnas.0900809106. Epub 2009 Jun 16.
7
A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues.
PLoS Comput Biol. 2009 May;5(5):e1000383. doi: 10.1371/journal.pcbi.1000383. Epub 2009 May 8.
8
Redox-regulated chaperones.
Biochemistry. 2009 Jun 9;48(22):4666-76. doi: 10.1021/bi9003556.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验