Suppr超能文献

[综合图像处理对放射科医生利用CT和MRI进行肝脏病变鉴别诊断表现的影响]

[Effect of a comprehensive image processing on radiologists' performance in differential diagnosis of liver lesions using CT and MRI].

作者信息

Inoue Akira, Ishida T, Okura Y, Akiyama M, Ito K, Matsunaga N

出版信息

Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010 Jun 20;66(6):692-3. doi: 10.6009/jjrt.66.692.

Abstract

PURPOSE

To evaluate whether a comprehensive image processing method as CAD using CT and MRI can improve the radiologists' diagnosis performance in the differentiation of focal liver lesions.

METHOD AND MATERIALS

A clinical image database used in this study consists of 14 cases of each lesion including hepatic cysts, hepatocellular carcinoma (HCC), metastatic liver cancer, and hemangioma. This technique by using MR images obtained with various imaging sequences and a series of dynamic MR and dynamic CT images is designed for the enhancement of liver lesions pixel by pixel. In this method, we make the pixel sizes of MR images the same size of CT image by using tri-linear interpolation technique. Then the 3D image registration technique based on mutual information is applied for the matching of images. The image intensity pattern with and without contrast enhancement is determined as the template for the differential detection of each lesion. Pixel-by-pixel cross-correlation coefficient is calculated for the enhancement of each lesion. The radiologists' performance in distinguishing between the liver lesion was evaluated by receiver operating characteristic analysis (ROC) with a continuous rating scale.

RESULTS

In free-response ROC analysis, true positive fractions were 75%, 87%, 85%, and 86% for hepatic cysts, HCC, metastatic liver cancer and hemangioma, respectively. Furthermore, average number of false positive and false negatives per image was 3.4 and 0.3, respectively. When radiologists made differential diagnosis of the liver lesions with the images of this technique, diagnostic accuracy was statistically significantly improved compared to the diagnostic accuracy without the images of this technique. The average area under the ROC curve (Az value) improved from 0.881 to 0.964 (p=0.069) for the differential diagnosis of hepatic cysts. Furthermore, the Az value of HCC, metastatic liver cancer, and hemangioma improved from 0.951 to 0.979 (p=0.040), from 0.946 to 0.976 (p=0.226), and from 0.966 to 0.987(p=0.045), respectively.

CONCLUSION

A comprehensive image processing method as CAD using CT and MRI can improve the radiologists' diagnostic performance in the differentiation of focal liver lesions. CLINICAL RELEVANCE/APPLICATION: This method improved the performance of differential detection of liver lesions from a large number of images and it would save radiologists' reading time, and thus could assist their diagnosis.

摘要

目的

评估一种使用CT和MRI的计算机辅助检测(CAD)综合图像处理方法能否提高放射科医生鉴别肝脏局灶性病变的诊断性能。

方法和材料

本研究使用的临床图像数据库包含每种病变各14例,包括肝囊肿、肝细胞癌(HCC)、转移性肝癌和肝血管瘤。该技术通过使用各种成像序列获得的MR图像以及一系列动态MR和动态CT图像,旨在逐像素增强肝脏病变。在该方法中,我们使用三线性插值技术使MR图像的像素大小与CT图像相同。然后应用基于互信息的三维图像配准技术进行图像匹配。有无对比增强的图像强度模式被确定为每种病变鉴别检测的模板。计算每个病变增强的逐像素互相关系数。通过采用连续评分量表的受试者操作特征分析(ROC)评估放射科医生鉴别肝脏病变的性能。

结果

在自由反应ROC分析中,肝囊肿、HCC、转移性肝癌和肝血管瘤的真阳性率分别为75%、87%、85%和86%。此外,每张图像的平均假阳性和假阴性数量分别为3.4和0.3。当放射科医生使用该技术的图像对肝脏病变进行鉴别诊断时,与不使用该技术图像的诊断准确性相比,诊断准确性有统计学显著提高。肝囊肿鉴别诊断的ROC曲线下平均面积(Az值)从0.881提高到0.964(p = 0.069)。此外,HCC、转移性肝癌和肝血管瘤的Az值分别从0.951提高到0.979(p = 0.040),从0.946提高到0.976(p = 0.226),从0.966提高到0.987(p = 0.045)。

结论

一种使用CT和MRI的CAD综合图像处理方法可提高放射科医生鉴别肝脏局灶性病变的诊断性能。临床相关性/应用:该方法提高了从大量图像中鉴别肝脏病变的性能,节省了放射科医生的阅片时间,从而有助于他们的诊断。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验