Suppr超能文献

一种使用人工智能对混合形状多孔介质进行 3D 细化的新方法。在小梁骨中的应用。

A new method for 3D thinning of hybrid shaped porous media using artificial intelligence. Application to trabecular bone.

机构信息

University of Orleans, Orléans, France.

出版信息

J Med Syst. 2012 Apr;36(2):497-510. doi: 10.1007/s10916-010-9495-y. Epub 2010 May 4.

Abstract

Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.

摘要

曲线和曲面细化是三维物体建模中广泛使用的骨架化技术。然而,在无序多孔介质分析的情况下,这两种方法都不是真正有效的,因为物体的内部几何形状通常由杆和板形状组成。本文提出了一种计算混合形状相关骨架的替代方法,并将其应用于多孔介质。得到的骨架结合了 2D 曲面和 1D 曲线,分别表示物体的板状和杆状部分。为此,提出了一种基于神经网络的新技术:复小波变换(CWT)和复值人工神经网络(CVANN)的级联组合。在一个小梁骨样本上证明了骨架对混合形状多孔介质的特征描述能力。结果表明,所提出的方法达到了约 99.78%-99.97%的高精度。特别是,CWT(第 2 级)-CVANN 结构收敛到最佳结果,具有高精度和最小的时间消耗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验