Suppr超能文献

一种使用小波和人工神经网络的新 QRS 检测方法。

A new QRS detection method using wavelets and artificial neural networks.

机构信息

Department of Electronic Engineering, Yeungnam University, Gyeongsan, South Korea.

出版信息

J Med Syst. 2011 Aug;35(4):683-91. doi: 10.1007/s10916-009-9405-3. Epub 2010 Jan 20.

Abstract

We present a new method for detection and classification of QRS complexes in ECG signals using continuous wavelets and neural networks. Our wavelet method consists of four wavelet basis functions that are suitable in detection of QRS complexes within different QRS morphologies in the signal and thresholding technique for denoising and feature extraction. The results demonstrate that the proposed method is not only efficient for normal ECG signal analysis but also for various types of arrhythmic cardiac signals embedded in noise. For the classification stage, a feedforward neural network was trained with standard backpropagation algorithm. The classifier input features consisted of compact wavelet coefficients of QRS complexes that resulted in higher classification rates. We demonstrate the efficiency of our method with the average accuracy 97.2% in classification of normal and abnormal QRS complexes.

摘要

我们提出了一种使用连续小波和神经网络检测和分类 ECG 信号中 QRS 复合体的新方法。我们的小波方法由四个适合在信号中检测不同 QRS 形态的 QRS 复合体的小波基函数和阈值技术组成,用于去噪和特征提取。结果表明,该方法不仅对正常 ECG 信号分析有效,而且对噪声中嵌入的各种类型的心律失常心脏信号也有效。对于分类阶段,使用标准反向传播算法训练前馈神经网络。分类器的输入特征由 QRS 复合体的紧凑小波系数组成,从而提高了分类率。我们通过平均准确率为 97.2%的正常和异常 QRS 复合体分类来证明我们方法的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验