Department of Physical Geography, Utrecht University, P.O. Box 80125, NL-3508 TC Utrecht, The Netherlands.
Environ Sci Technol. 2010 Aug 15;44(16):6305-12. doi: 10.1021/es101252e.
For the evaluation of action programs to reduce surface water pollution, water authorities invest heavily in water quality monitoring. However, sampling frequencies are generally insufficient to capture the dynamical behavior of solute concentrations. For this study, we used on-site equipment that performed semicontinuous (15 min interval) NO(3) and P concentration measurements from June 2007 to July 2008. We recorded the concentration responses to rainfall events with a wide range in antecedent conditions and rainfall durations and intensities. Through sequential linear multiple regression analysis, we successfully related the NO(3) and P event responses to high-frequency records of precipitation, discharge, and groundwater levels. We applied the regression models to reconstruct concentration patterns between low-frequency water quality measurements. This new approach significantly improved load estimates from a 20% to a 1% bias for NO(3) and from a 63% to a 5% bias for P. These results demonstrate the value of commonly available precipitation, discharge, and groundwater level data for the interpretation of water quality measurements. Improving load estimates from low-frequency concentration data just requires a period of high-frequency concentration measurements and a conceptual, statistical, or physical model for relating the rainfall event response of solute concentrations to quantitative hydrological changes.
为了评估减少地表水污染物行动计划,水管理部门在水质监测方面投入了大量资金。然而,采样频率通常不足以捕捉溶质浓度的动态行为。在本研究中,我们使用现场设备,从 2007 年 6 月到 2008 年 7 月进行了半连续(15 分钟间隔)NO3 和 P 浓度测量。我们记录了在不同的前期条件和降雨持续时间和强度下,对降雨事件的浓度响应。通过顺序线性多元回归分析,我们成功地将 NO3 和 P 事件的响应与降水、流量和地下水位的高频记录联系起来。我们将回归模型应用于重建低频水质测量之间的浓度模式。这种新方法将 NO3 的负荷估计从 20%提高到 1%的偏差,将 P 的负荷估计从 63%提高到 5%的偏差。这些结果表明,通常可用的降水、流量和地下水位数据对于解释水质测量具有重要价值。提高低频浓度数据的负荷估计仅需要一段时间的高频浓度测量,以及一个概念、统计或物理模型,用于将溶质浓度的降雨事件响应与定量水文变化联系起来。