Suppr超能文献

TGFβ 信号通路定位纤毛带并为海胆胚胎中的神经元定型。

TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo.

机构信息

Shimoda Marine Research Center, University of Tsukuba, Japan.

出版信息

Dev Biol. 2010 Nov 1;347(1):71-81. doi: 10.1016/j.ydbio.2010.08.009. Epub 2010 Aug 12.

Abstract

The ciliary band is a distinct region of embryonic ectoderm that is specified between oral and aboral ectoderm. Flask-shaped ciliary cells and neurons differentiate in this region and they are patterned to form an integrated tissue that functions as the principal swimming and feeding organ of the larva. TGFβ signaling, which is known to mediate oral and aboral patterning of the ectoderm, has been implicated in ciliary band formation. We have used morpholino knockdown and ectopic expression of RNA to alter TGFβ signaling at the level of ligands, receptors, and signal transduction components and assessed the differentiation and patterning of the ciliary band cells and associated neurons. We propose that the primary effects of these signals are to position the ciliary cells, which in turn support neural differentiation. We show that Nodal signaling, which is known to be localized by Lefty, positions the oral margin of the ciliary band. Signaling from BMP through Alk3/6, affects the position of the oral and aboral margins of the ciliary band. Since both Nodal and BMP signaling produce ectoderm that does not support neurogenesis, we propose that formation of a ciliary band requires protection from these signals. Expression of BMP2/4 and Nodal suppress neural differentiation. However, the response to receptor knockdown or dominant-negative forms of signal transduction components indicate signaling is not acting directly on unspecified ectoderm cells to prevent their differentiation as neurons. Instead, it produces a restricted field of ciliary band cells that supports neurogenesis. We propose a model that incorporates spatially regulated control of Nodal and BMP signaling to determine the position and differentiation of the ciliary band, and subsequent neural patterning.

摘要

纤毛带是胚胎外胚层的一个独特区域,在口侧和肛侧外胚层之间被特化。在此区域分化出瓶状纤毛细胞和神经元,并对其进行组织模式化,形成一个整合的组织,作为幼虫的主要游泳和进食器官。已知 TGFβ 信号转导介导外胚层的口侧和肛侧模式形成,它与纤毛带的形成有关。我们使用形态发生素敲低和 RNA 异位表达来改变配体、受体和信号转导成分的 TGFβ 信号转导,并评估纤毛带细胞和相关神经元的分化和模式形成。我们提出,这些信号的主要作用是定位纤毛细胞,纤毛细胞反过来又支持神经分化。我们表明,Lefty 定位的 Nodal 信号定位纤毛带的口侧边缘。BMP 通过 Alk3/6 发出的信号影响纤毛带的口侧和肛侧边缘的位置。由于 Nodal 和 BMP 信号都产生不支持神经发生的外胚层,我们提出形成纤毛带需要免受这些信号的保护。BMP2/4 和 Nodal 的表达抑制神经分化。然而,对受体敲低或信号转导成分的显性负形式的反应表明,信号不是直接作用于未指定的外胚层细胞,以防止其分化为神经元。相反,它产生了一个受限制的纤毛带细胞区,支持神经发生。我们提出了一个模型,该模型将 Nodal 和 BMP 信号的空间调节控制纳入其中,以确定纤毛带的位置和分化,以及随后的神经模式形成。

相似文献

1
TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo.
Dev Biol. 2010 Nov 1;347(1):71-81. doi: 10.1016/j.ydbio.2010.08.009. Epub 2010 Aug 12.
2
Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
Development. 2006 Jun;133(12):2337-46. doi: 10.1242/dev.02396. Epub 2006 May 10.
3
Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
Mech Dev. 2011 Jan-Feb;128(1-2):71-89. doi: 10.1016/j.mod.2010.11.001. Epub 2010 Nov 5.
4
Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
Dev Biol. 2008 Aug 1;320(1):49-59. doi: 10.1016/j.ydbio.2008.04.012. Epub 2008 Apr 20.
5
Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
Dev Cell. 2004 Mar;6(3):397-410. doi: 10.1016/s1534-5807(04)00056-5.
6
Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
Dev Biol. 2007 Feb 15;302(2):494-503. doi: 10.1016/j.ydbio.2006.10.010. Epub 2006 Oct 10.
8
Developmental origin of peripheral ciliary band neurons in the sea urchin embryo.
Dev Biol. 2020 Mar 15;459(2):72-78. doi: 10.1016/j.ydbio.2019.12.011. Epub 2019 Dec 24.
10
Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
Dev Biol. 2021 Jul;475:131-144. doi: 10.1016/j.ydbio.2020.12.012. Epub 2021 Jan 20.

引用本文的文献

1
Alizarin red perturbs skeletal patterning and biomineralization via Catalase inhibition.
bioRxiv. 2025 Jul 4:2025.07.03.663060. doi: 10.1101/2025.07.03.663060.
2
PFAS compounds PFOA and Gen X are teratogenic to sea urchin embryos.
Dev Biol. 2025 Jun 4;525:139-154. doi: 10.1016/j.ydbio.2025.06.004.
4
Reprogramming of cells during embryonic transfating: overcoming a reprogramming block.
Development. 2024 Dec 15;151(24). doi: 10.1242/dev.203152. Epub 2024 Dec 20.
5
PFAS Compounds PFOA and Gen X are Teratogenic to Sea Urchin Embryos.
bioRxiv. 2024 Nov 21:2024.11.21.624751. doi: 10.1101/2024.11.21.624751.
10
microRNA-124 regulates Notch and NeuroD1 to mediate transition states of neuronal development.
Dev Neurobiol. 2023 Jan;83(1-2):3-27. doi: 10.1002/dneu.22902. Epub 2022 Nov 23.

本文引用的文献

1
Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
PLoS Biol. 2009 Nov;7(11):e1000248. doi: 10.1371/journal.pbio.1000248. Epub 2009 Nov 24.
2
The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example.
Dev Biol. 2010 Apr 15;340(2):170-8. doi: 10.1016/j.ydbio.2009.06.007. Epub 2009 Jun 10.
3
Chordin is required for neural but not axial development in sea urchin embryos.
Dev Biol. 2009 Apr 15;328(2):221-33. doi: 10.1016/j.ydbio.2009.01.027. Epub 2009 Jan 29.
4
The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
Development. 2009 Apr;136(7):1179-89. doi: 10.1242/dev.032300.
5
A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo.
Dev Biol. 2009 May 15;329(2):410-21. doi: 10.1016/j.ydbio.2009.02.029. Epub 2009 Mar 4.
6
Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
Dev Biol. 2008 Aug 1;320(1):49-59. doi: 10.1016/j.ydbio.2008.04.012. Epub 2008 Apr 20.
7
A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
Dev Cell. 2008 Jan;14(1):97-107. doi: 10.1016/j.devcel.2007.10.012.
9
Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
Dev Biol. 2007 Jun 15;306(2):860-9. doi: 10.1016/j.ydbio.2007.03.033. Epub 2007 Mar 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验