Suppr超能文献

功能表征 pGKT2,一个含有 xplAB 基因的 182 千碱基对质粒,该基因参与了 Gordonia sp. 菌株 KTR9 对六氢-1,3,5-三硝基-1,3,5-三嗪的降解。

Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9.

机构信息

CEERD-EP-P, US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA.

出版信息

Appl Environ Microbiol. 2010 Oct;76(19):6329-37. doi: 10.1128/AEM.01217-10. Epub 2010 Aug 13.

Abstract

Several microorganisms have been isolated that can transform hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a cyclic nitramine explosive. To better characterize the microbial genes that facilitate this transformation, we sequenced and annotated a 182-kb plasmid, pGKT2, from the RDX-degrading strain Gordonia sp. KTR9. This plasmid carries xplA, encoding a protein sharing up to 99% amino acid sequence identity with characterized RDX-degrading cytochromes P450. Other genes that cluster with xplA are predicted to encode a glutamine synthase-XplB fusion protein, a second cytochrome P450, Cyp151C, and XplR, a GntR-type regulator. Rhodococcus jostii RHA1 expressing xplA from KTR9 degraded RDX but did not utilize RDX as a nitrogen source. Moreover, an Escherichia coli strain producing XplA degraded RDX but a strain producing Cyp151C did not. KTR9 strains cured of pGKT2 did not transform RDX. Physiological studies examining the effects of exogenous nitrogen sources on RDX degradation in strain KTR9 revealed that ammonium, nitrite, and nitrate each inhibited RDX degradation by up to 79%. Quantitative real-time PCR analysis of glnA-xplB, xplA, and xplR showed that transcript levels were 3.7-fold higher during growth on RDX than during growth on ammonium and that this upregulation was repressed in the presence of various inorganic nitrogen sources. Overall, the results indicate that RDX degradation by KTR9 is integrated with central nitrogen metabolism and that the uptake of RDX by bacterial cells does not require a dedicated transporter.

摘要

已经分离出几种能够转化六氢-1,3,5-三硝基-1,3,5-三嗪(RDX)的微生物,RDX 是一种环状硝胺炸药。为了更好地描述促进这种转化的微生物基因,我们对 RDX 降解菌株 Gordonia sp. KTR9 的 182kb 质粒 pGKT2 进行了测序和注释。该质粒携带 xplA,编码的蛋白与已鉴定的 RDX 降解细胞色素 P450 具有高达 99%的氨基酸序列同一性。与 xplA 簇集的其他基因预测编码一种谷氨酰胺合酶-XplB 融合蛋白、第二种细胞色素 P450 Cyp151C 和 XplR,一种 GntR 型调节剂。表达 KTR9 中 xplA 的 Rhodococcus jostii RHA1 可降解 RDX,但不能将 RDX 用作氮源。此外,产生 XplA 的大肠杆菌菌株可降解 RDX,但产生 Cyp151C 的菌株则不能。被 pGKT2 切除的 KTR9 菌株不能转化 RDX。对 KTR9 菌株中添加外源氮源对 RDX 降解的影响进行的生理研究表明,铵、亚硝酸盐和硝酸盐分别抑制 RDX 降解高达 79%。对 glnA-xplB、xplA 和 xplR 的定量实时 PCR 分析表明,在 RDX 上生长时,转录水平比在铵上生长时高 3.7 倍,并且这种上调在存在各种无机氮源时受到抑制。总的来说,结果表明 KTR9 对 RDX 的降解与中心氮代谢相整合,并且细菌细胞对 RDX 的摄取不需要专用转运体。

相似文献

4
Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria.
J Appl Microbiol. 2011 Jun;110(6):1449-59. doi: 10.1111/j.1365-2672.2011.04995.x. Epub 2011 Mar 30.
5
Role of nitrogen limitation in transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Gordonia sp. strain KTR9.
Appl Environ Microbiol. 2013 Mar;79(5):1746-50. doi: 10.1128/AEM.03905-12. Epub 2012 Dec 28.
6
7
A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene.
J Microbiol Methods. 2007 Feb;68(2):267-74. doi: 10.1016/j.mimet.2006.08.008. Epub 2006 Sep 28.
8
Lateral transfer of genes for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation.
Appl Environ Microbiol. 2009 May;75(10):3258-62. doi: 10.1128/AEM.02396-08. Epub 2009 Mar 6.
9
Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9.
J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1273-1281. doi: 10.1007/s10295-019-02185-3. Epub 2019 May 22.
10
Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer.
Biodegradation. 2015 Nov;26(6):443-51. doi: 10.1007/s10532-015-9746-1. Epub 2015 Oct 5.

引用本文的文献

1
Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9.
J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1273-1281. doi: 10.1007/s10295-019-02185-3. Epub 2019 May 22.
2
Biodegradation of insensitive munition formulations IMX101 and IMX104 in surface soils.
J Ind Microbiol Biotechnol. 2017 Jul;44(7):987-995. doi: 10.1007/s10295-017-1930-3. Epub 2017 Mar 3.
3
Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater.
Microbiologyopen. 2017 Apr;6(2). doi: 10.1002/mbo3.423. Epub 2016 Nov 17.
4
Metagenomic analysis of denitrifying wastewater enrichment cultures able to transform the explosive, 3-nitro-1,2,4-triazol-5-one (NTO).
J Ind Microbiol Biotechnol. 2016 Jun;43(6):795-805. doi: 10.1007/s10295-016-1755-5. Epub 2016 Mar 31.
5
Ancient Evolution and Recent Evolution Converge for the Biodegradation of Cyanuric Acid and Related Triazines.
Appl Environ Microbiol. 2016 Jan 4;82(6):1638-1645. doi: 10.1128/AEM.03594-15.
6
Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site.
Environ Sci Pollut Res Int. 2015 Jul;22(13):10340-50. doi: 10.1007/s11356-015-4256-6. Epub 2015 Feb 28.
7
Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome.
PLoS One. 2014 Nov 10;9(11):e110505. doi: 10.1371/journal.pone.0110505. eCollection 2014.
8
9
Role of nitrogen limitation in transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Gordonia sp. strain KTR9.
Appl Environ Microbiol. 2013 Mar;79(5):1746-50. doi: 10.1128/AEM.03905-12. Epub 2012 Dec 28.
10
Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium.
Appl Environ Microbiol. 2012 Nov;78(21):7798-800. doi: 10.1128/AEM.02120-12. Epub 2012 Aug 24.

本文引用的文献

1
Complete genome sequence of Gordonia bronchialis type strain (3410).
Stand Genomic Sci. 2010 Jan 28;2(1):19-28. doi: 10.4056/sigs.611106.
2
Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum.
J Bacteriol. 2010 Jul;192(13):3441-51. doi: 10.1128/JB.00214-10. Epub 2010 Apr 30.
5
Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB.
Appl Microbiol Biotechnol. 2009 Sep;84(3):535-44. doi: 10.1007/s00253-009-2024-6. Epub 2009 May 20.
7
Lateral transfer of genes for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation.
Appl Environ Microbiol. 2009 May;75(10):3258-62. doi: 10.1128/AEM.02396-08. Epub 2009 Mar 6.
8
Evaluation of genomic island predictors using a comparative genomics approach.
BMC Bioinformatics. 2008 Aug 5;9:329. doi: 10.1186/1471-2105-9-329.
10
The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp.
Appl Environ Microbiol. 2008 Jul;74(14):4550-2. doi: 10.1128/AEM.00391-08. Epub 2008 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验