Suppr超能文献

从非结构化表面网格中高效计算三维几何和泽尼克矩。

Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.

机构信息

Center for Computational Imaging & Simulation Technologies in Biomedicine, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):471-84. doi: 10.1109/TPAMI.2010.139.

Abstract

This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.

摘要

本文介绍并评估了一种快速精确算法和一系列更快的近似算法,用于从无结构三角形曲面网格计算三维几何矩。基于物体表面的方法降低了这些算法相对于基于体网格的算法的计算复杂度。相比之下,它只能应用于同质物体的几何矩计算。这种优势和限制与其他基于物体边界的提出的算法共享。所提出的精确算法将计算几何矩的计算复杂度降低到相对于以前提出的精确算法的 N(9)到 N(6)阶,其中 N 为阶数。近似级数算法在三角形大小和物体大小之间的比率上呈现为幂级数,可以在任何期望的阶截断。三角形的数量和质量越高,逼近效果越好。这种近似算法将计算复杂度降低到 N(3)。此外,本文还介绍了一种从计算出的几何矩计算三维 Zernike 矩的快速算法,其计算复杂度为 N(4),而以前提出的算法的阶数为 N(6)。本文还评估了所提出的近似算法在不同形状下引入的误差以及误差和计算时间方面的成本效益比,并针对不同的矩阶数进行了分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验