Department of Polymer Science and Engineering, Inha University, Incheon, Korea.
Nanotechnology. 2010 Sep 17;21(37):378001. doi: 10.1088/0957-4484/21/37/378001. Epub 2010 Aug 17.
This comment is an analysis of the static yield stress of core-shell structured SiO(2)-calcium-titanium precipitation (CTP) particle-based electrorheological (ER) suspensions under various applied electric field strengths. We find that our previously published universal yield stress equation covers both polarization and conduction regions while the polar-molecule-based linearity mechanism becomes dominant for the giant ER fluid beyond the second critical electric field strength.
这篇评论分析了在不同外加电场强度下,具有核壳结构的 SiO(2)-钙钛矿沉淀(CTP)粒子基电流变(ER)悬浮液的静态屈服应力。我们发现,我们之前发表的通用屈服应力方程涵盖了极化和传导区域,而对于超过第二临界电场强度的巨型 ER 流体,基于极性分子的线性机制变得占主导地位。