Australian Research Council Centre of Excellence for Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia.
Plant Physiol. 2010 Oct;154(2):691-704. doi: 10.1104/pp.110.162214. Epub 2010 Aug 18.
Given the substantial changes in mitochondrial gene expression, the mitochondrial proteome, and respiratory function during rice (Oryza sativa) germination under anaerobic and aerobic conditions, we have attempted to identify changes in mitochondrial membrane transport capacity during these processes. We have assembled a preliminary rice mitochondrial carrier gene family of 50 members, defined its orthology to carriers of known function, and observed significant changes in microarray expression data for these rice genes during germination under aerobic and anaerobic conditions and across rice development. To determine if these transcript changes reflect alteration of the carrier profile itself and to determine which members of the family encode the major mitochondrial carrier proteins, we analyzed mitochondrial integral membrane protein preparations using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mass spectrometry, identifying seven distinct carrier proteins. We have used mass spectrometry-based quantitative approaches to compare the abundance of these carriers between mitochondria from dry seeds and those from aerobic- or anaerobic-germinated seeds. We highlight an anaerobic-enhanced basic amino acid carrier and show concomitant increases in mitochondrial arginase and the abundance of arginine and ornithine in anaerobic-germinated seeds, consistent with an anaerobic role of this mitochondria carrier. The potential role of this carrier in facilitating mitochondrial involvement in arginine metabolism and the plant urea cycle during the growth of rice coleoptiles and early seed nitrate assimilation under anaerobic conditions are discussed.
鉴于在线粒体基因表达、线粒体蛋白质组和呼吸功能方面在有氧和无氧条件下的显著变化,我们试图鉴定在这些过程中线粒体膜运输能力的变化。我们组装了一个初步的 50 个成员的水稻线粒体载体基因家族,定义了其与已知功能载体的同源性,并观察到这些水稻基因在有氧和无氧条件下以及在整个水稻发育过程中的微阵列表达数据发生了显著变化。为了确定这些转录变化是否反映了载体谱本身的改变,并确定家族中的哪些成员编码主要的线粒体载体蛋白,我们使用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和肽质量光谱法分析了线粒体完整膜蛋白制剂,鉴定了七种不同的载体蛋白。我们使用基于质谱的定量方法比较了来自干种子和有氧或无氧发芽种子的线粒体中这些载体的丰度。我们强调了一种增强的碱性氨基酸载体,并在无氧发芽种子中观察到线粒体精氨酸酶和精氨酸和鸟氨酸的丰度增加,这与这种线粒体载体的无氧作用一致。讨论了这种载体在线粒体参与精氨酸代谢和植物尿素循环中的潜在作用,以及在无氧条件下水稻 coleoptiles 和早期种子硝酸盐同化生长过程中的作用。