Suppr超能文献

基于四元数的航天器自适应输出反馈姿态控制:使用切比雪夫神经网络

Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

作者信息

Zou An-Min, Dev Kumar Krishna, Hou Zeng-Guang

机构信息

Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada.

出版信息

IEEE Trans Neural Netw. 2010 Sep;21(9):1457-71. doi: 10.1109/TNN.2010.2050333. Epub 2010 Aug 19.

Abstract

This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

摘要

本文研究了不确定航天器的输出反馈姿态控制问题。针对航天器的姿态跟踪控制,提出了两种基于切比雪夫神经网络(CNN)的鲁棒自适应输出反馈控制器,即自适应神经网络(NN)控制器-I和自适应NN控制器-II。采用四参数表示(四元数)来描述航天器姿态,以实现全局无奇异表示。利用非线性降阶观测器估计航天器输出的导数,并引入CNN通过逼近航天器姿态运动来进一步提高控制性能。所提出的控制器中使用的CNN基函数的实现仅依赖于期望信号,并且采用使用双曲正切函数的平滑鲁棒补偿器来抵消CNN逼近误差和外部干扰。自适应NN控制器-II可以有效避免自适应NN控制器-I中存在的过估计问题(即,CNN的输出界限远大于逼近的未知函数的界限,因此控制输入可能非常大)。两种使用CNN的自适应输出反馈控制器都可以保证所得闭环系统中的所有信号一致最终有界。为了进行性能比较,还开发了使用航天器姿态运动线性参数化的标准自适应控制器。仿真研究表明了所提出的基于CNN的输出反馈方法相对于标准自适应输出反馈方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验