Department of Anatomy, Yonsei University College of Medicine, 134 Shinchon-dong Seodaemun-gu, Seoul, 120-752, Korea.
Mol Cell Biochem. 2010 Dec;345(1-2):53-60. doi: 10.1007/s11010-010-0559-6. Epub 2010 Aug 21.
The arginine decarboxylase (ADC) is a significant functional enzyme, synthesizes agmatine through arginine metabolism, and agmatine was reported to posses protective properties in various tissues. This study first optimized the conditions for efficient hexahistidine tagged human ADC (hisADC) gene delivery into mouse fibroblast cell line (NIH3T3) using retroviral vector (pLXSN). Later, the functionality of the delivered hisADC gene in synthesizing agmatine during H(2)O(2) injury in NIH3T3 was also elucidated. Amplification of hisADC gene was performed using hisADC specific primers under specified conditions. The hisADC PCR product (1.4 kb) was ligated with pLXSN considering the restriction enzyme sites. The complete hisADC pLXSN clone was transfected into PT67 cell line following CalPhos Mammalian transfection method. RT-PCR and western blot results showed the specific and strong detection of hisADC genes in hisADC PT67 transfected cells compared with normal control and pLXSN transfected PT67 cells. The retrovirus containing hisADC gene (vhisADC) was infected into NIH3T3 (vhisADC NIH) using polybrene reagent. Immunocytochemical results showed hisADC expression in the cytoplasm of vhisADC NIH. HPLC analysis revealed high agmatine concentration in the vhisADC NIH, and the induced agmatine synthesized from the retroviral gene delivery prevented vhisADC NIH from H(2)O(2) injury which is evident by the decrease in lactate dehydrogenase (P < 0.05) leakage into the medium and less number of propidium iodide positive cells during injury compared to control group. The obtained results provide compelling evidence that higher level of hisADC transgene expression completely triggered the endogenous agmatine synthesis during H(2)O(2) injury thus protecting NIH3T3 cells against cytotoxicity.
精氨酸脱羧酶(ADC)是一种重要的功能酶,通过精氨酸代谢合成胍丁胺,而胍丁胺据报道在各种组织中具有保护作用。本研究首先使用逆转录病毒载体(pLXSN)优化了六组氨酸标记的人 ADC(hisADC)基因递送至小鼠成纤维细胞系(NIH3T3)的有效条件。随后,还阐明了递送至 hisADC 基因在 NIH3T3 的 H₂O₂损伤期间合成胍丁胺的功能。在特定条件下使用 hisADC 特异性引物进行 hisADC 基因扩增。将 hisADC PCR 产物(1.4kb)与 pLXSN 考虑到限制酶位点连接。将完整的 hisADC pLXSN 克隆通过 CalPhos 哺乳动物转染方法转染到 PT67 细胞系中。RT-PCR 和 Western blot 结果显示,与正常对照和 pLXSN 转染的 PT67 细胞相比,hisADC PT67 转染细胞中 hisADC 基因的特异性和强检测。用多聚凝胺试剂将含有 hisADC 基因的逆转录病毒(vhisADC)感染到 NIH3T3(vhisADC NIH)中。免疫细胞化学结果显示 hisADC 在 vhisADC NIH 的细胞质中表达。HPLC 分析显示 vhisADC NIH 中胍丁胺浓度较高,并且通过逆转录病毒基因传递诱导的胍丁胺合成可防止 vhisADC NIH 受到 H₂O₂损伤,与对照组相比,损伤期间培养基中乳酸脱氢酶(P <0.05)漏出减少,碘化丙啶阳性细胞数量减少。获得的结果提供了令人信服的证据,即更高水平的 hisADC 转基因表达完全触发了内源性胍丁胺合成在 H₂O₂损伤期间,从而保护 NIH3T3 细胞免受细胞毒性。