Qualcomm Inc., 5775 Morehouse Dr., San Diego, CA 92121-1714, USA.
IEEE Trans Pattern Anal Mach Intell. 2011 Jan;33(1):186-93. doi: 10.1109/TPAMI.2010.163.
In this paper, we study the benefits of the availability of a specific form of additional information—the vertical direction (gravity) and the height of the camera, both of which can be conveniently measured using inertial sensors and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The SfM algorithm developed in this paper is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research data set.
在本文中,我们研究了可用性特定形式的附加信息(垂直方向(重力)和相机的高度)的优势,这两者都可以使用惯性传感器和单目视频序列方便地测量,用于 3D 城市建模。我们表明,在存在此信息的情况下,可以将 SfM 方程重写为双线性形式。这使我们能够为大规模应用程序开发快速,鲁棒和可扩展的 SfM 算法。本文开发的 SfM 算法与稀疏束调整算法相比具有良好的性能。我们提供实验证据表明,在许多情况下,所提出的算法收敛于误差低于束调整的最新实现的解决方案。我们还表明,对于大的重建问题,与束调整相比,所提出的算法花费更少的时间来达到其解决方案。我们还在 Google StreetView 研究数据集上展示了使用我们的算法的 SfM 结果。