Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, USA.
ACS Appl Mater Interfaces. 2010 Aug;2(8):2238-47. doi: 10.1021/am100282q.
This study describes a strategy to use composite colloidal nanoparticles and triethylsilane as precursors to synthesize nanometer size structures on single-crystal silicon substrate. The concept is demonstrated by depositing gold, iron-gold alloy, and iron-gold core-shell nanoparticles on silicon (111). Upon heating, the nanoparticles form new crystalline phases on the Si (111) surface. Atomic force microscope (AFM) data show the collapse of the iron gold core-shell and alloy nanoparticles at temperatures 100-200 degrees C higher than gold nanoparticles, indicating the efficient tethering of iron containing nanoparticles on silicon (111). Both structural analysis and X-ray spectroscopy show that the iron-gold alloy and iron-gold core-shell nanoparticles successfully form the semiconducting beta-FeSi(2) phase at relatively low temperature. The stabilities of the silicide are assessed at elevated temperatures. Silicon successfully nucleates on the created nanostructures, which suggests strong catalytic activity towards producing further nanostructures on the surface.
本研究描述了一种使用复合胶体纳米粒子和三乙硅烷作为前体在单晶硅衬底上合成纳米结构的策略。该概念通过在硅(111)上沉积金、铁金合金和铁金核壳纳米颗粒得到证明。加热后,纳米颗粒在 Si(111)表面形成新的晶体相。原子力显微镜(AFM)数据表明,铁金核壳和合金纳米颗粒在比金纳米颗粒高 100-200 摄氏度的温度下发生坍塌,表明含铁纳米颗粒在硅(111)上的有效固定。结构分析和 X 射线能谱均表明,铁金合金和铁金核壳纳米颗粒在相对较低的温度下成功形成了半导体β-FeSi(2)相。还评估了硅化物的稳定性在高温下。硅在生成的纳米结构上成功成核,这表明其对在表面上进一步生成纳米结构具有很强的催化活性。