Suppr超能文献

一种模块化全髋关节置换的强度、耐久性和牵开力的检索分析和体外评估。

Retrieval analysis and in vitro assessment of strength, durability, and distraction of a modular total hip replacement.

机构信息

Department of Mechanical Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada.

出版信息

J Biomed Mater Res A. 2010 Dec 1;95(3):819-27. doi: 10.1002/jbm.a.32886.

Abstract

We investigated a commercial Co-Cr-alloy head--Ti6Al4V alloy neck and Ti6Al4V stem modular total hip replacement. We assessed the distraction forces after in vitro cycling in bovine serum, fatigue durability, fretting corrosion damage, and load bearing capacity of new implants using fatigue-corrosion, pull-off, scanning electron microscopy, fatigue and compression investigations. In addition, we studied corrosion, fretting damage, and distraction forces on retrievals. For both retrievals and in vitro test samples, the neck-stem interface required the higher distraction force as compared with the head-neck interface. One of 12 retrievals showed strong fretting corrosion at the neck-stem interface which resulted in a high disassembly force of about 16 kN. For in vitro test samples, the neck-stem pull-off force initially increased during cycling and showed a maximum value of 5.704 kN at ∼100,000 cycles, which is equivalent to gait cycles performed in approximately 36 days. Overall, assembly force, initial component settling, and interface corrosion primarily determine the force required to distract the modular components. One million cycles fatigue failure of the neck can be expected at a maximum compression load of -6.5 kN. No component failure was observed during quasistatic compression; rather the neck deformed plastically and the ultimate compression load-bearing capacity was -13 kN.

摘要

我们研究了一种商用 Co-Cr -alloy 头 - Ti6Al4V 合金颈和 Ti6Al4V 柄模块化全髋关节置换物。我们评估了在牛血清体外循环后的分离力、疲劳耐久性、微动腐蚀损伤以及使用疲劳-腐蚀、拉脱、扫描电子显微镜、疲劳和压缩研究的新植入物的承载能力。此外,我们研究了回收物上的腐蚀、微动损伤和分离力。对于回收物和体外测试样品,与头-颈界面相比,颈-柄界面需要更高的分离力。12 个回收物中有一个在颈-柄界面处显示出强烈的微动腐蚀,导致高拆卸力约为 16 kN。对于体外测试样品,颈-柄拉脱力在循环过程中最初增加,并在约 100000 次循环时达到 5.704 kN 的最大值,这相当于大约 36 天内进行的步态循环。总体而言,装配力、初始组件沉降和界面腐蚀主要决定了分离模块化组件所需的力。在最大压缩载荷为-6.5 kN 的情况下,颈的 100 万次循环疲劳失效是可以预期的。在准静态压缩过程中没有观察到部件失效;相反,颈部发生塑性变形,极限压缩承载能力为-13 kN。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验