Suppr超能文献

准确预测依曲康唑及其代谢物的体外抑制数据对 CYP3A4 抑制的剂量依赖性。

Accurate prediction of dose-dependent CYP3A4 inhibition by itraconazole and its metabolites from in vitro inhibition data.

机构信息

Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA.

出版信息

Clin Pharmacol Ther. 2010 Oct;88(4):499-505. doi: 10.1038/clpt.2010.119. Epub 2010 Aug 25.

Abstract

Inhibitory drug metabolites may contribute to drug-drug interactions (DDIs). The aim of this study was to determine the importance of inhibitory metabolites of itraconazole (ITZ) in in vivo cytochrome P450 (CYP) 3A4 inhibition. The pharmacokinetics of ITZ and midazolam (MDZ) were determined in six healthy volunteers in four sessions after administration of MDZ with and without oral ITZ. After doses of 50, 200, and 400 mg of ITZ, the clearance of orally administered MDZ decreased by 27, 74, and 83%, respectively. The in vivo half maximal inhibitory concentration (IC(50)) for ITZ ranged from 5 to 132 nmol/l in the six subjects. The metabolites of ITZ were estimated to account for ~50% of the total CYP3A4 inhibition, with the relative contribution increasing with time after ITZ dosing. Of the total of 18 interactions observed, 15 (84%) could be predicted within a twofold error margin, with improved accuracy observed when ITZ metabolites were included in the predictions. This study shows that the metabolites of ITZ contribute to CYP3A4 inhibition and need to be accounted for in quantitative rationalization of ITZ-mediated DDIs.

摘要

抑制性药物代谢物可能导致药物相互作用(DDI)。本研究旨在确定伊曲康唑(ITZ)抑制性代谢物在体内细胞色素 P450(CYP)3A4 抑制中的重要性。在四个疗程中,给六名健康志愿者口服咪达唑仑(MDZ)并同时给予或不给予口服 ITZ,以确定 ITZ 和 MDZ 的药代动力学。给予 ITZ 50、200 和 400 mg 剂量后,口服 MDZ 的清除率分别下降了 27%、74%和 83%。六位受试者的体内 ITZ 半最大抑制浓度(IC(50))范围为 5-132 nmol/L。ITZ 的代谢物估计占 CYP3A4 总抑制的~50%,随着 ITZ 给药后时间的增加,其相对贡献也随之增加。在观察到的总共 18 种相互作用中,有 15 种(84%)可以在两倍误差范围内预测,当将 ITZ 代谢物纳入预测时,准确性得到了提高。本研究表明,ITZ 的代谢物会导致 CYP3A4 抑制,在对 ITZ 介导的 DDI 进行定量合理化时需要考虑这些代谢物。

相似文献

1
Accurate prediction of dose-dependent CYP3A4 inhibition by itraconazole and its metabolites from in vitro inhibition data.
Clin Pharmacol Ther. 2010 Oct;88(4):499-505. doi: 10.1038/clpt.2010.119. Epub 2010 Aug 25.
3
Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo.
Clin Pharmacol Ther. 2008 Jan;83(1):77-85. doi: 10.1038/sj.clpt.6100230. Epub 2007 May 9.
4
Role of itraconazole metabolites in CYP3A4 inhibition.
Drug Metab Dispos. 2004 Oct;32(10):1121-31. doi: 10.1124/dmd.104.000315. Epub 2004 Jul 8.
6
7
Stereochemical aspects of itraconazole metabolism in vitro and in vivo.
Drug Metab Dispos. 2006 Apr;34(4):583-90. doi: 10.1124/dmd.105.008508. Epub 2006 Jan 13.

引用本文的文献

1
Trends in drug-drug interactions for new drug clinical trials in China over the past 10 years (2013-2022).
BMC Pharmacol Toxicol. 2025 Mar 21;26(1):66. doi: 10.1186/s40360-025-00905-3.
2
Understanding the mechanisms of food effect on omaveloxolone pharmacokinetics through physiologically based biopharmaceutics modeling.
CPT Pharmacometrics Syst Pharmacol. 2024 Oct;13(10):1771-1783. doi: 10.1002/psp4.13221. Epub 2024 Sep 2.
3
The Use of Microdosing for In vivo Phenotyping of Cytochrome P450 Enzymes: Where Do We Stand? A Narrative Review.
Eur J Drug Metab Pharmacokinet. 2024 Jul;49(4):407-418. doi: 10.1007/s13318-024-00896-2. Epub 2024 Apr 30.
5
Repurposing antifungal drugs for cancer therapy.
J Adv Res. 2023 Jun;48:259-273. doi: 10.1016/j.jare.2022.08.018. Epub 2022 Sep 5.
9
Impact of Lipid Partitioning on the Design, Analysis, and Interpretation of Microsomal Time-Dependent Inactivation.
Drug Metab Dispos. 2019 Jul;47(7):732-742. doi: 10.1124/dmd.118.085969. Epub 2019 May 1.

本文引用的文献

2
An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug-drug interaction.
Drug Metab Dispos. 2008 Jul;36(7):1198-201. doi: 10.1124/dmd.107.020198. Epub 2008 Apr 17.
3
Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo.
Clin Pharmacol Ther. 2008 Jan;83(1):77-85. doi: 10.1038/sj.clpt.6100230. Epub 2007 May 9.
4
The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions.
J Pharmacol Exp Ther. 2006 Jan;316(1):336-48. doi: 10.1124/jpet.105.093229. Epub 2005 Sep 28.
5
Role of itraconazole metabolites in CYP3A4 inhibition.
Drug Metab Dispos. 2004 Oct;32(10):1121-31. doi: 10.1124/dmd.104.000315. Epub 2004 Jul 8.
6
Atomoxetine hydrochloride: clinical drug-drug interaction prediction and outcome.
J Pharmacol Exp Ther. 2004 Feb;308(2):410-8. doi: 10.1124/jpet.103.058727. Epub 2003 Nov 10.
8
Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19.
Drug Metab Dispos. 2003 May;31(5):565-71. doi: 10.1124/dmd.31.5.565.
10
The effect of ingestion time interval on the interaction between itraconazole and triazolam.
Clin Pharmacol Ther. 1996 Sep;60(3):326-31. doi: 10.1016/S0009-9236(96)90059-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验