Institut Pasteur, Unite Toxines et Pathogénie Bacteriénnes (URA 2172, CNRS), 25-28 rue de Dr Roux, 75724 Paris Cedex 15, France.
Biol Cell. 2010 Nov;102(11):609-19. doi: 10.1042/BC20100080.
Under conditions of starvation, bacteria of Bacillus ssp. are able to form a highly structured cell type, the dormant spore. When the environment presents more favourable conditions, the spore starts to germinate, which will lead to the release of the vegetative form in the life cycle, the bacillus. For Bacillus anthracis, the aetiological agent of anthrax, germination is normally linked to host uptake and represents an important step in the onset of anthrax disease. Morphological studies analysing the organization of the spore and the changes during germination at the electron microscopy level were only previously performed with techniques relying on fixation with aldehydes and osmium, and subsequent dehydration, which can produce artefacts.
In the present study, we describe the morphology of dormant spores using CEMOVIS (Cryo-Electron Microscopy of Vitreous Sections). Biosafety measures do not permit freezing of native spores of B. anthracis without chemical fixation. To study the influence of aldehyde fixation on the ultrastructure of the spore, we chose to analyse spores of the closely related non-pathogen Bacillus cereus T. For none of the investigated structures could we find a difference in morphology induced by aldehyde fixation compared with the native preparations for CEMOVIS. This result legitimizes work with aldehyde-fixed spores from B. anthracis. Using CEMOVIS, we describe two new structures present in the spore: a rectangular structure, which connects the BclA filaments with the basal layer of the exosporium, and a repetitive structure, which can be found in the terminal layer of the coat. We studied the morphological changes of the spore during germination. After outgrowth of the bacillus, coat and exosporium stay associated, and the layered organization of the coat, as well as the repetitive structure within it, remain unchanged.
在饥饿条件下,芽孢杆菌属的细菌能够形成一种高度结构化的细胞类型,即休眠孢子。当环境呈现出更有利的条件时,孢子开始发芽,这将导致生命周期中的营养体形式,芽孢杆菌的释放。对于炭疽芽孢杆菌,炭疽病的病原体,发芽通常与宿主摄取有关,是炭疽病发病的重要步骤。在电子显微镜水平上分析孢子的形态组织和发芽过程中的变化的形态学研究以前仅使用依赖于醛固定和锇后处理的技术进行,这可能会产生假象。
在本研究中,我们使用 CEMOVIS(玻璃态切片的冷冻电子显微镜)描述休眠孢子的形态。生物安全措施不允许在没有化学固定的情况下冷冻炭疽芽孢杆菌的天然孢子。为了研究醛固定对孢子超微结构的影响,我们选择分析密切相关的非病原体蜡状芽孢杆菌的孢子。对于所有研究的结构,我们都没有发现醛固定与 CEMOVIS 原生制剂相比在形态上的差异。这一结果使我们能够对炭疽芽孢杆菌的醛固定孢子进行研究。使用 CEMOVIS,我们描述了孢子中存在的两个新结构:一个连接 BclA 丝与外孢囊基层的矩形结构,以及一个可以在外壳的末端层中找到的重复结构。我们研究了孢子在发芽过程中的形态变化。在杆菌生长后,外壳和外孢囊仍然保持关联,外壳的分层组织以及其中的重复结构保持不变。