Lash Miller Chemical Laboratories, Department of Chemistry and Institute of Optical Science, University of Toronto, 80 St. George Street, Ontario, M5S 3H6, Canada.
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):950-5. doi: 10.1073/pnas.1006657107. Epub 2010 Aug 23.
The fabrication of nano devices at surfaces makes conflicting demands of mobility for self-assembly (SA) and immobility for permanence. The solution proposed in earlier work from this laboratory involved pattern formation in physisorbed molecules by SA, followed by localized reaction to chemically imprint the pattern substantially unchanged, a procedure we termed molecular-scale imprinting (MSI). Here, as proof of generality we extended this procedure, previously applied to imprinting circles on Si(111)-7 × 7, to SA lines of 1-chloropentane (CP) on Si(100)-2 × 1. The physisorbed lines consisted of pairs of CP that grew perpendicular to the Si dimer rows, as shown by scanning tunneling microscopy and ab initio theory. Chemical reaction of these lines with the surface was triggered in separate experiments by three different modes of energization: heat, electrons, or light. In all cases the CP molecules underwent MSI with a Si atom beneath so that the physisorbed lines of CP pairs were imprinted as chemisorbed lines of Cl pairs.
在表面上制造纳米器件对自组装(SA)的迁移率和永久性提出了相互矛盾的要求。本实验室早期工作提出的解决方案涉及通过 SA 在物理吸附分子中形成图案,然后进行局部反应以化学方式基本不变地压印图案,我们称之为分子尺度压印(MSI)。在这里,作为通用性的证明,我们将此过程扩展到以前应用于 Si(111)-7×7 上印迹圆形的过程,应用于 Si(100)-2×1 上 1-氯戊烷(CP)的 SA 线。正如扫描隧道显微镜和从头计算理论所表明的那样,这些物理吸附线由垂直于 Si 二聚体行生长的 CP 对组成。通过三种不同的激励模式(热、电子或光)在单独的实验中触发这些线与表面的化学反应。在所有情况下,CP 分子都经历了 MSI,其中有一个 Si 原子在下面,因此 CP 对的物理吸附线被印迹为 Cl 对的化学吸附线。