Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
Urology. 2011 Feb;77(2):422-6. doi: 10.1016/j.urology.2010.05.044. Epub 2010 Aug 30.
To use two population-based samples of prostate cancer-free men to develop and validate a novel multivariable equation for estimating prostate volume (PV). Previous investigators have demonstrated the ability to use serum prostate-specific antigen (PSA) levels to estimate PV in men without prostate cancer; however, the ability of additional clinical variables to further enhance PV estimation in these men remains unclear.
We applied linear regression modeling to data from an 80% random sample (n = 366) of the baseline cohort from the Olmsted County Study of Urinary Symptoms and Health Status among Men (OCS) to develop an equation for estimating PV in men without prostate cancer. We then evaluated the predictive ability of this equation by comparing estimated and measured PV values in 3 additional validation sets of men.
The final linear regression model included PSA, age, and weight as independent predictors of PV. For prediction in baseline OCS men, the multiple correlation coefficients increased from 0.62(PSAalone) to 0.71(fullmodel). In addition, the area under the curve estimates from the receiver operating characteristic curves increased from 0.79(PSAalone) to 0.85(fullmodel) for predicting PV >30 mL.
Our data suggest that PV can be estimated with easily obtained clinical variables. Moreover, we demonstrate that age and weight can be added to PSA level to achieve greater accuracy in predicting PV. This methodology may prove useful for estimating PV in men in settings where costs and practicality preclude the use of imaging techniques.
利用两个前列腺癌无病男性的基于人群的样本,开发和验证一种新的多变量方程,用于估计前列腺体积(PV)。先前的研究人员已经证明,使用血清前列腺特异性抗原(PSA)水平可以估计无前列腺癌男性的 PV;然而,在这些男性中,其他临床变量是否有能力进一步提高 PV 估计值尚不清楚。
我们将线性回归模型应用于来自奥姆斯特德县男性尿症状和健康状况研究(OCS)基线队列的 80%随机样本(n=366)的数据中,以开发一种用于估计无前列腺癌男性 PV 的方程。然后,我们通过比较另外 3 个验证组男性的估计和实测 PV 值来评估该方程的预测能力。
最终的线性回归模型包括 PSA、年龄和体重作为 PV 的独立预测因子。对于基线 OCS 男性的预测,多元相关系数从 PSAalone 的 0.62 增加到 fullmodel 的 0.71。此外,接受者操作特征曲线下的面积估计值从 PSAalone 的 0.79 增加到 fullmodel 的 0.85,用于预测 PV >30 mL。
我们的数据表明,PV 可以用容易获得的临床变量来估计。此外,我们证明年龄和体重可以添加到 PSA 水平,以提高预测 PV 的准确性。这种方法可能在需要考虑成本和实用性而无法使用成像技术的情况下,用于估计男性的 PV。