Suppr超能文献

在 SIS 和 SIR 随机传染病模型中的康复个体数量。

On the number of recovered individuals in the SIS and SIR stochastic epidemic models.

机构信息

Department of Statistics and Operations Research, Faculty of Mathematics, Complutense University of Madrid, 28040 Madrid, Spain.

出版信息

Math Biosci. 2010 Nov;228(1):45-55. doi: 10.1016/j.mbs.2010.08.006. Epub 2010 Aug 27.

Abstract

The basic models of infectious disease dynamics (the SIS and SIR models) are considered. Particular attention is paid to the number of infected individuals that recovered and its relationship with the final epidemic size. We investigate this descriptor both until the extinction of the epidemic and in transient regime. Simple and efficient methods to obtain the distribution of the number of recovered individuals and its moments are proposed and discussed with respect to the previous work. The methodology could also be extended to other stochastic epidemic models. The theory is illustrated by numerical experiments, which demonstrate that the proposed computational methods can be applied efficiently. In particular, we use the distribution of the number of individuals removed in the SIR model in conjunction with data of outbreaks of ESBL observed in the intensive care unit of a Spanish hospital.

摘要

考虑了传染病动力学的基本模型(SIS 和 SIR 模型)。特别关注已经康复的感染者数量及其与最终疫情规模的关系。我们研究了这个描述符,直到疫情的终结和过渡阶段。提出了一种简单有效的方法来获得已康复个体数量的分布及其矩,并与以前的工作进行了讨论。该方法也可以扩展到其他随机传染病模型。该理论通过数值实验进行了说明,实验表明,所提出的计算方法可以有效地应用。特别是,我们使用 SIR 模型中移除个体数量的分布,并结合西班牙一家医院重症监护病房观察到的 ESBL 爆发数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验