Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1.
J Exp Biol. 2010 Sep 15;213(Pt 18):3150-60. doi: 10.1242/jeb.044719.
Rhesus (Rh) protein involvement in ammonia transport processes in freshwater fish has received considerable attention; however, parallel investigations in seawater species are scant. We exposed pufferfish to high environmental ammonia (HEA; 1 and 5 mmol l(-1) NH(4)HCO(3)) and evaluated the patterns of ammonia excretion and gill Rh mRNA and protein expression. Gill H(+)-ATPase, NHE1, NHE2, NHE3, Na(+)/K(+)-ATPase (NKA), Na(+)/K(+)/2Cl(-) co-transporter (NKCC1) mRNA, H(+)-ATPase activity, NKA protein and activity, were also quantified. Activation of NKA by NH(4)(+) was demonstrated in vitro. The downregulation of Rhbg mRNA and simultaneous upregulations of Rhcg1, H(+)-ATPase, NHE3, NKA, NKCC1 mRNA, H(+)-ATPase activity, and NKA protein and activity levels suggested that during HEA, ammonia excretion was mediated mainly by mitochondria-rich cells (MRCs) driven by NKA with basolateral NH(4)(+) entry via NKA and/or NKCC1, and apical NH(3) extrusion via Rhcg1. Reprotonation of NH(3) by NHE3 and/or H(+)-ATPase would minimise back flux through the Rh channels. Downregulated Rhbg and Rhag mRNA observed in the gill during HEA suggests a coordinated protective response to minimise the influx of external ammonia via the pavement cells and pillar cells, respectively, while routing ammonia excretion through the MRCs. Exposure to hypercapnia (1% CO(2) in air) resulted in downregulated gill and erythrocyte Rhag mRNA. Surprisingly, Rhag, Rhbg, Rhcg1 and Rhcg2 proteins responded to both hypercapnia and HEA with changes in their apparent molecular masses. A dual NH(3)/CO(2) transport function of the pufferfish Rh proteins is therefore suggested. The results support and extend an earlier proposed model of pufferfish gill ammonia excretion that was based on immunolocalisation of the Rh proteins. Passive processes and/or Rhbg and Rhcg2 in the pavement cells may maintain basal levels of plasma ammonia but elevated levels may require active excretion via NKA and Rhcg1 in the MRCs.
淡水鱼类 Rh 蛋白在氨转运过程中的作用受到了广泛关注;然而,对海水物种的平行研究却很少。我们将河豚暴露于高环境氨(HEA;1 和 5 mmol l(-1) NH(4)HCO(3))中,并评估了氨排泄和鳃 Rh mRNA 和蛋白表达的模式。还定量了鳃 H(+)-ATP 酶、NHE1、NHE2、NHE3、Na(+)/K(+)-ATP 酶(NKA)、Na(+)/K(+)/2Cl(-)协同转运体(NKCC1)mRNA、H(+)-ATP 酶活性、NKA 蛋白和活性。体外实验证实了 NH(4)(+)对 NKA 的激活作用。Rhbg mRNA 的下调和 Rhcg1、H(+)-ATP 酶、NHE3、NKA、NKCC1 mRNA、H(+)-ATP 酶活性以及 NKA 蛋白和活性水平的上调提示,在 HEA 期间,氨排泄主要由 NKA 驱动的富含线粒体的细胞(MRCs)介导,基底外侧 NH(4)(+)通过 NKA 和/或 NKCC1 进入,顶端 NH(3)通过 Rhcg1 排出。NHE3 和/或 H(+)-ATP 酶将 NH(3)重新质子化可将反向通量通过 Rh 通道最小化。在 HEA 期间,鳃中观察到的 Rhbg 和 Rhag mRNA 的下调表明,分别通过上皮细胞和柱细胞协调保护反应,以最小化外部氨的流入,同时通过 MRCs 进行氨排泄。暴露于高碳酸血症(空气中 1% CO(2))导致鳃和红细胞 Rhag mRNA 的下调。令人惊讶的是,Rhag、Rhbg、Rhcg1 和 Rhcg2 蛋白对高碳酸血症和 HEA 均有反应,其表观分子量发生变化。因此,建议河豚 Rh 蛋白具有双重 NH(3)/CO(2)转运功能。该结果支持并扩展了基于 Rh 蛋白免疫定位的河豚鳃氨排泄的早期提出的模型。上皮细胞中的被动过程和/或 Rhbg 和 Rhcg2 可能维持基础水平的血浆氨,但升高的水平可能需要通过 MRCs 中的 NKA 和 Rhcg1 进行主动排泄。