Department of Biology, University of Copenhagen, Copenhagen, Denmark.
EMBO J. 2010 Oct 6;29(19):3318-29. doi: 10.1038/emboj.2010.203. Epub 2010 Aug 27.
The molecular networks that control endoplasmic reticulum (ER) redox conditions in mammalian cells are incompletely understood. Here, we show that after reductive challenge the ER steady-state disulphide content is restored on a time scale of seconds. Both the oxidase Ero1α and the oxidoreductase protein disulphide isomerase (PDI) strongly contribute to the rapid recovery kinetics, but experiments in ERO1-deficient cells indicate the existence of parallel pathways for disulphide generation. We find PDI to be the main substrate of Ero1α, and mixed-disulphide complexes of Ero1 primarily form with PDI, to a lesser extent with the PDI-family members ERp57 and ERp72, but are not detectable with another homologue TMX3. We also show for the first time that the oxidation level of PDIs and glutathione is precisely regulated. Apparently, this is achieved neither through ER import of thiols nor by transport of disulphides to the Golgi apparatus. Instead, our data suggest that a dynamic equilibrium between Ero1- and glutathione disulphide-mediated oxidation of PDIs constitutes an important element of ER redox homeostasis.
哺乳动物细胞中控制内质网(ER)氧化还原状态的分子网络尚未完全阐明。在这里,我们发现,在还原性挑战后,ER 稳态二硫键含量在几秒钟的时间内得到恢复。氧化酶 Ero1α 和氧化还原酶蛋白二硫键异构酶(PDI)都强烈促进快速恢复动力学,但在 ERO1 缺陷细胞中的实验表明,二硫键生成存在并行途径。我们发现 PDI 是 Ero1α 的主要底物,并且 Ero1 的混合二硫键复合物主要与 PDI 形成,其次是 PDI 家族成员 ERp57 和 ERp72,但与另一个同源物 TMX3 不可检测。我们还首次表明 PDIs 和谷胱甘肽的氧化水平受到精确调控。显然,这既不是通过 ER 导入巯基,也不是通过将二硫键运输到高尔基体来实现的。相反,我们的数据表明,Ero1 和谷胱甘肽二硫键介导的 PDIs 氧化之间的动态平衡是 ER 氧化还原稳态的重要组成部分。