Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
J Am Chem Soc. 2010 Sep 22;132(37):12847-9. doi: 10.1021/ja105548x.
We report a manganese porphyrin mediated aliphatic C-H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C-H bonds, such as neopentane (BDE =∼100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5α-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the Mn(III) porphyrin is expected to afford a reactive Mn(V)═O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a Mn(IV)-OH complex. We suggest that this carbon radical then reacts with a Mn(IV)-OCl species, providing the alkyl chloride and regenerating the reactive Mn(V)═O complex. The regioselectivity and the preference for CH(2) groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mn(v)═O---H---C] geometry due to the C-H approach to the Mn(v)═O (dπ-pπ)* frontier orbital.
我们报告了一种使用次氯酸钠作为氯源的锰卟啉介导的脂肪族 C-H 键氯化反应。在相转移催化剂和锰卟啉 Mn(TPP)Cl1 的催化量存在下,次氯酸钠与不同的未活化烷烃反应得到烷基氯作为主要产物,只有痕量的氧化产物。具有强 C-H 键的底物,如新戊烷(BDE≈100kcal/mol)也可以中等产率氯化。诊断底物降蒈烷的氯化得到重排产物,表明存在长寿命的碳自由基中间体。此外,使用受阻催化剂 Mn(TMP)Cl2 实现了区域选择性氯化。氯化反式十氢萘时,2 提供了 95%的亚甲基氯化产物选择性,以及 C2 位置的偏好。该新型氯化体系也应用于复杂底物。以 5α-胆甾烷为底物,我们仅观察到 C2 和 C3 位置的氯化,总收率为 55%,对应于 A 环中最小空间位阻的亚甲基位置。类似地,青蒿内酯的氯化得到了 42%分离收率的赤道 C2 氯化物。关于机理,次氯酸钠与 Mn(III)卟啉的反应预计会生成一种活性 Mn(V)=O 配合物,从底物中提取一个氢原子,生成游离的烷基自由基和 Mn(IV)-OH 配合物。我们建议,这个碳自由基随后与 Mn(IV)-OCl 物种反应,生成烷基氯化物并再生活性 Mn(V)=O 配合物。区域选择性和对 CH(2)基团的偏好可归因于底物上的烷基与锰卟啉的芳基之间的非键相互作用。结果表明由于 C-H 接近 Mn(v)=O(dπ-pπ)*前线轨道,因此存在弯曲的[Mn(v)=O---H---C]几何形状。