Department of Physics and Key Laboratory for Atomic and Molecular Nanosciences, Tsinghua University, Beijing, 100084, China.
J Phys Chem A. 2010 Sep 23;114(37):9973-80. doi: 10.1021/jp1039332.
The spin-vibronic energy levels of BrCN(+) (X̃(2)Π) up to 7700 cm(-1) above the vibrational ground state have been measured using zero-kinetic energy photoelectron spectroscopy (ZEKE) and tunable coherent extreme ultraviolet (XUV) light. The fundamental bands for C≡N stretching, Br-C≡N bending, and C-Br stretching vibrations have been measured, and a strong bending excitation was observed. The Renner-Teller effect and the Fermi interaction between the C-Br stretching and the Br-C≡N bending have been observed experimentally. To characterize the spin-vibronic interaction in BrCN(+) (X̃(2)Π), an effective diabatic model Hamiltonian with spectroscopic parameters describing these interactions was used to calculate the vibronic energy levels. The spectroscopic parameters have been determined by fitting the experimental data. Theoretical calculations based on the diabatic model were also performed. The theoretical spectroscopic parameters have been calculated using the potential energy surfaces reported by Biczysko and Tarroni (Chem. Phys. Lett. 2005, 415, 223). The calculated vibronic energy levels and spectroscopic parameters have been compared with those from the experimental data. For the diabatic potential energy matrix, the ab initio calculations provide good description of the diagonal elements, however, the off-diagonal elements deviate appreciably from those determined by experimental data. By analyzing the ZEKE spectrum of the ground vibrational band, the first adiabatic ionization energy for BrCN has been determined as 95 675.5 ± 2.0 cm(-1).
BrCN(+)(X̃(2)Π)的自旋-振动能级在振动基态以上高达 7700cm(-1),已经通过零动能光电电子能谱(ZEKE)和可调谐相干极紫外(XUV)光测量得到。已经测量了 C≡N 伸缩、Br-C≡N 弯曲和 C-Br 伸缩振动的基本谱带,并观察到了强烈的弯曲激发。实验观察到了 Renner-Teller 效应和 C-Br 伸缩与 Br-C≡N 弯曲之间的费米相互作用。为了描述 BrCN(+)(X̃(2)Π)中的自旋-振动相互作用,使用具有描述这些相互作用的光谱参数的有效非绝热模型哈密顿量来计算振动能级。光谱参数是通过拟合实验数据确定的。还进行了基于非绝热模型的理论计算。理论光谱参数是使用 Biczysko 和 Tarroni(Chem. Phys. Lett. 2005, 415, 223)报告的势能面计算得到的。计算得到的振动能级和光谱参数与实验数据进行了比较。对于非绝热势能矩阵,从头计算为对角元素提供了很好的描述,然而,非对角元素与实验数据确定的值明显偏离。通过分析基频带的 ZEKE 光谱,确定了 BrCN 的第一绝热电离能为 95 675.5 ± 2.0cm(-1)。