Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
J Eval Clin Pract. 2011 Feb;17(1):45-60. doi: 10.1111/j.1365-2753.2010.01368.x. Epub 2010 Aug 30.
Time series analysis has seen limited application in the biomedical Literature. The utility of conventional and advanced time series estimators was explored for intensive care unit (ICU) outcome series.
Monthly mean time series, 1993-2006, for hospital mortality, severity-of-illness score (APACHE III), ventilation fraction and patient type (medical and surgical), were generated from the Australia and New Zealand Intensive Care Society adult patient database. Analyses encompassed geographical seasonal mortality patterns, series structural time changes, mortality series volatility using autoregressive moving average and Generalized Autoregressive Conditional Heteroscedasticity models in which predicted variances are updated adaptively, and bivariate and multivariate (vector error correction models) cointegrating relationships between series.
The mortality series exhibited marked seasonality, declining mortality trend and substantial autocorrelation beyond 24 lags. Mortality increased in winter months (July-August); the medical series featured annual cycling, whereas the surgical demonstrated long and short (3-4 months) cycling. Series structural breaks were apparent in January 1995 and December 2002. The covariance stationary first-differenced mortality series was consistent with a seasonal autoregressive moving average process; the observed conditional-variance volatility (1993-1995) and residual Autoregressive Conditional Heteroscedasticity effects entailed a Generalized Autoregressive Conditional Heteroscedasticity model, preferred by information criterion and mean model forecast performance. Bivariate cointegration, indicating long-term equilibrium relationships, was established between mortality and severity-of-illness scores at the database level and for categories of ICUs. Multivariate cointegration was demonstrated for {log APACHE III score, log ICU length of stay, ICU mortality and ventilation fraction}.
A system approach to understanding series time-dependence may be established using conventional and advanced econometric time series estimators.
时间序列分析在生物医学文献中应用有限。探讨了传统和先进的时间序列估计器在重症监护病房(ICU)结局系列中的应用。
从澳大利亚和新西兰重症监护学会成人患者数据库中生成了 1993-2006 年医院死亡率、严重程度评分(APACHE III)、通气分数和患者类型(内科和外科)的月度均值时间序列。分析包括地理季节性死亡率模式、系列结构时间变化、使用自回归移动平均和广义自回归条件异方差模型的死亡率序列波动性,其中预测方差自适应更新,以及系列之间的二元和多元(向量误差校正模型)协整关系。
死亡率序列表现出明显的季节性,死亡率呈下降趋势,自相关超过 24 滞后。冬季(7-8 月)死亡率升高;内科系列呈年度循环,而外科系列则呈长(3-4 个月)短循环。1995 年 1 月和 2002 年 12 月出现明显的序列结构断裂。协方差平稳一阶差分死亡率序列与季节性自回归移动平均过程一致;观察到的条件方差波动性(1993-1995 年)和剩余自回归条件异方差效应需要广义自回归条件异方差模型,该模型由信息准则和平均模型预测性能优选。双变量协整表明,死亡率与严重程度评分之间存在长期均衡关系,数据库级别和 ICU 类别均建立了长期均衡关系。多元协整表明,{logAPACHE III 评分、logICU 住院时间、ICU 死亡率和通气分数}之间存在协整关系。
使用传统和先进的计量经济学时间序列估计器,可以建立一种理解序列时间依赖性的系统方法。