Departamento de Química Física, Sección de Químicas, Facultad del Medio Ambiente and INAMOL, Universidad de Castilla-La Mancha, Carlos III S/N 45071 Toledo, Spain.
J Phys Chem B. 2010 Nov 18;114(45):14787-95. doi: 10.1021/jp105343f. Epub 2010 Sep 1.
Exploring the relationship between the structure and dynamics of a molecular system is fundamental to a better understanding of its function. Here, we report on studies of femtosecond dynamics of the most stable molecular structures of a cardiovascular drug, levosimendan (LSM), in water at three different pHs, in chemical (β-cyclodextrin, β-CD) and biological (human serum albumin protein, HSA) nanocavities, and in two organic solvents with different viscosities. In the used organic solvents, the structural dynamics, ranging from 50 fs to 3 ps, depends on the viscosity of the solvent, reflecting the involvement of a twisting motion in the excited molecule. In water solutions at pH 3 and 5, the excited neutral form is decaying in a time of ∼0.4 ps, undergoing an ultrafast (<50 fs) intramolecular charge transfer (ICT) to generate charge transfer species decaying in ∼1 ps. In neutral (pH 7) and alkaline water (pH 12), the LSM is present in its anion structure at the ground state. In these media, the experiments reveal, in addition to the ultrafast decay of the anionic structure (1.3 ps), the formation of an ICT state having (n, π*) character, produced in ∼0.3 ps and decaying in ∼0.5 ps. Encapsulation by β-CD and HSA protein leads to a 1:1 stoichiometry complex, which shows longer decaying times (4 and 7 ps, respectively) of the caged anionic forms due to the nanoconfinement. Our results show a structural diversity of the LSM dynamics, reflecting its intimate interaction with its surrounding. We believe that the reported findings and the related discussion and conclusions bring new knowledge for a better understanding of the molecular activity of this drug, taking into account its rich structural dynamics. Furthermore, the results might be relevant for a better drug design and nanodelivery involving CDs and proteins.
探索分子系统的结构和动力学之间的关系对于更好地理解其功能至关重要。在这里,我们报告了在三种不同 pH 值下、在化学(β-环糊精,β-CD)和生物(人血清白蛋白蛋白,HSA)纳米腔中以及在两种具有不同粘度的有机溶剂中,对心血管药物左西孟旦(LSM)的最稳定分子结构的飞秒动力学研究。在所用的有机溶剂中,结构动力学范围从 50 fs 到 3 ps,取决于溶剂的粘度,反映了激发分子中扭曲运动的参与。在 pH 值为 3 和 5 的水溶液中,激发的中性形式在约 0.4 ps 的时间内衰减,经历超快(<50 fs)分子内电荷转移(ICT)以生成在约 1 ps 内衰减的电荷转移物种。在中性(pH 7)和碱性水(pH 12)中,LSM 以其基态的阴离子结构存在。在这些介质中,实验除了揭示阴离子结构的超快衰减(1.3 ps)之外,还揭示了形成具有(n,π*)特征的 ICT 态,其在约 0.3 ps 内生成并在约 0.5 ps 内衰减。β-CD 和 HSA 蛋白的包封导致形成 1:1 化学计量复合物,由于纳米限制,笼状阴离子形式的衰减时间分别延长至 4 和 7 ps。我们的结果表明 LSM 动力学具有结构多样性,反映了其与周围环境的密切相互作用。我们相信,所报道的发现以及相关的讨论和结论为更好地理解该药物的分子活性带来了新知识,同时考虑到其丰富的结构动力学。此外,这些结果可能与涉及 CDs 和蛋白质的更好的药物设计和纳米传递有关。