Suppr超能文献

利用激酶结构基序和小分子激酶抑制剂的抑制谱来模拟骨髓毒性。

Modeling bone marrow toxicity using kinase structural motifs and the inhibition profiles of small molecular kinase inhibitors.

机构信息

Non-Clinical Safety, Hoffmann-La Roche, Nutley, New Jersey 07110, USA.

出版信息

Toxicol Sci. 2010 Nov;118(1):266-75. doi: 10.1093/toxsci/kfq258. Epub 2010 Sep 1.

Abstract

The cellular function of kinases combined with the difficulty of designing selective small molecule kinase inhibitors (SMKIs) poses a challenge for drug development. The late-stage attrition of SMKIs could be lessened by integrating safety information of kinases into the lead optimization stage of drug development. Herein, a mathematical model to predict bone marrow toxicity (BMT) is presented which enables the rational design of SMKIs away from this safety liability. A specific example highlights how this model identifies critical structural modifications to avoid BMT. The model was built using a novel algorithm, which selects 19 representative kinases from a panel of 277 based upon their ATP-binding pocket sequences and ability to predict BMT in vivo for 48 SMKIs. A support vector machine classifier was trained on the selected kinases and accurately predicts BMT with 74% accuracy. The model provides an efficient method for understanding SMKI-induced in vivo BMT earlier in drug discovery.

摘要

激酶的细胞功能与设计选择性小分子激酶抑制剂 (SMKI) 的困难给药物开发带来了挑战。通过将激酶的安全性信息整合到药物开发的先导优化阶段,可以减少 SMKI 的后期淘汰。本文提出了一种预测骨髓毒性 (BMT) 的数学模型,该模型可以合理设计远离这种安全性问题的 SMKI。一个具体的例子突出了该模型如何识别避免 BMT 的关键结构修饰。该模型使用一种新算法构建,该算法基于其 ATP 结合口袋序列和对 48 种 SMKI 的体内 BMT 的预测能力,从 277 种激酶中选择了 19 种代表性激酶。支持向量机分类器在选定的激酶上进行训练,可以准确地预测 BMT,准确率为 74%。该模型为在药物发现的早期阶段了解 SMKI 引起的体内 BMT 提供了一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验