Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China.
J Neurosci. 2010 Sep 1;30(35):11848-57. doi: 10.1523/JNEUROSCI.2985-10.2010.
Locus ceruleus (LC) is the main subcortical site of norepinephrine synthesis. In Alzheimer's disease (AD) patients and rodent models, degeneration of LC neurons and reduced levels of norepinephrine in LC projection areas are significantly correlated with the increase in amyloid plaques, neurofibrillary tangles, and severity of dementia. Activated microglia play a pivotal role in the progression of AD by either clearing amyloid beta peptide (Abeta) deposits through uptake of Abeta or releasing cytotoxic substances and proinflammatory cytokines. Here, we investigated the effect of norepinephrine on Abeta uptake and clearance by murine microglia and explored the underlying mechanisms. We found that murine microglia cell line N9 and primary microglia expressed beta(2) adrenergic receptor (AR) but not beta(1) and beta(3)AR. Norepinephrine and isoproterenol upregulated the expression of Abeta receptor mFPR2, a mouse homolog of human formyl peptide receptor FPR2, through activation of beta(2)AR in microglia. Norepinephrine also induced mFPR2 expression in mouse brain. Activation of beta(2)AR in microglia promoted Abeta(42) uptake through upregulation of mFPR2 and enhanced spontaneous cell migration but had no effect on cell migration in response to mFPR2 agonists. Furthermore, activation of beta(2)AR on microglia induced the expression of insulin-degrading enzyme and increased the degradation of Abeta(42). Mechanistic studies showed that isoproterenol induced mFPR2 expression through ERK1/2-NF-kappaB and p38-NF-kappaB signaling pathways. These findings suggest that noradrenergic innervation from LC is needed to maintain adequate Abeta uptake and clearance by microglia, and norepinephrine is a link between neuron and microglia to orchestrate the host response to Abeta in AD.
蓝斑(LC)是去甲肾上腺素合成的主要皮质下部位。在阿尔茨海默病(AD)患者和啮齿动物模型中,LC 神经元变性和 LC 投射区去甲肾上腺素水平降低与淀粉样斑块、神经原纤维缠结和痴呆严重程度的增加显著相关。激活的小胶质细胞通过摄取 Abeta 清除淀粉样β肽(Abeta)沉积,或释放细胞毒性物质和促炎细胞因子,在 AD 的进展中发挥关键作用。在这里,我们研究了去甲肾上腺素对小鼠小胶质细胞 Abeta 摄取和清除的影响,并探讨了潜在的机制。我们发现,小鼠小胶质细胞系 N9 和原代小胶质细胞表达β2 肾上腺素能受体(AR),但不表达β1 和β3AR。去甲肾上腺素和异丙肾上腺素通过激活小胶质细胞中的β2AR 上调 Abeta 受体 mFPR2 的表达,mFPR2 是人类形式肽受体 FPR2 的小鼠同源物。去甲肾上腺素也诱导了小鼠大脑中的 mFPR2 表达。β2AR 在小胶质细胞中的激活通过上调 mFPR2 促进 Abeta(42)的摄取,并增强自发细胞迁移,但对 mFPR2 激动剂诱导的细胞迁移没有影响。此外,小胶质细胞中β2AR 的激活诱导胰岛素降解酶的表达,并增加 Abeta(42)的降解。机制研究表明,异丙肾上腺素通过 ERK1/2-NF-κB 和 p38-NF-κB 信号通路诱导 mFPR2 表达。这些发现表明,来自 LC 的去甲肾上腺素能神经支配对于维持小胶质细胞摄取和清除足够的 Abeta 是必需的,而去甲肾上腺素是神经元和小胶质细胞之间的联系,以协调 AD 中宿主对 Abeta 的反应。