Malo Nathalie, Hanley James A, Carlile Graeme, Liu Jing, Pelletier Jerry, Thomas David, Nadon Robert
McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
J Biomol Screen. 2010 Sep;15(8):990-1000. doi: 10.1177/1087057110377497.
Identification of active compounds in high-throughput screening (HTS) contexts can be substantially improved by applying classical experimental design and statistical inference principles to all phases of HTS studies. The authors present both experimental and simulated data to illustrate how true-positive rates can be maximized without increasing false-positive rates by the following analytical process. First, the use of robust data preprocessing methods reduces unwanted variation by removing row, column, and plate biases. Second, replicate measurements allow estimation of the magnitude of the remaining random error and the use of formal statistical models to benchmark putative hits relative to what is expected by chance. Receiver Operating Characteristic (ROC) analyses revealed superior power for data preprocessed by a trimmed-mean polish method combined with the RVM t-test, particularly for small- to moderate-sized biological hits.
在高通量筛选(HTS)环境中,通过将经典实验设计和统计推断原则应用于HTS研究的各个阶段,活性化合物的鉴定可以得到显著改善。作者展示了实验数据和模拟数据,以说明如何通过以下分析过程在不增加假阳性率的情况下将真阳性率最大化。首先,使用稳健的数据预处理方法通过消除行、列和板偏差来减少不必要的变异。其次,重复测量允许估计剩余随机误差的大小,并使用形式统计模型将假定的命中与随机预期进行基准比较。接受者操作特征(ROC)分析表明,采用截尾均值平滑法结合RVM t检验预处理的数据具有更高的效能,特别是对于中小规模的生物学命中。