Suppr超能文献

成熟大麦粒中(微)营养素的百万像素成像。

Megapixel imaging of (micro)nutrients in mature barley grains.

机构信息

Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, Mawson Lakes, South Australia, SA-5095 Australia.

出版信息

J Exp Bot. 2011 Jan;62(1):273-82. doi: 10.1093/jxb/erq270. Epub 2010 Sep 5.

Abstract

Understanding the accumulation and distribution of essential nutrients in cereals is of primary importance for improving the nutritional quality of this staple food. While recent studies have improved the understanding of micronutrient loading into the barley grain, a detailed characterization of the distribution of micronutrients within the grain is still lacking. High-definition synchrotron X-ray fluorescence was used to investigate the distribution and association of essential elements in barley grain at the micro scale. Micronutrient distribution within the scutellum and the embryo was shown to be highly variable between elements in relation to various morphological features. In the rest of the grain, the distribution of some elements such as Cu and Zn was not limited to the aleurone layer but extended into the endosperm. This pattern of distribution was less marked in the case of Fe and, in particular, Mn. A significant difference in element distribution was also found between the ventral and dorsal part of the grains. The correlation between the elements was not consistent between and within tissues, indicating that the transport and storage of elements is highly regulated. The complexity of the spatial distribution and associations has important implications for improving the nutritional content of cereal crops such as barley.

摘要

了解谷物中必需营养元素的积累和分布对于提高这种主食的营养价值至关重要。虽然最近的研究提高了对微量元素加载到大麦籽粒中的理解,但对微量元素在籽粒内的分布的详细描述仍然缺乏。高清晰度同步加速器 X 射线荧光用于在微观尺度上研究大麦籽粒中必需元素的分布和关联性。微量元素在盾片和胚中的分布在不同形态特征下,各元素之间差异很大。在谷物的其余部分,一些元素(如 Cu 和 Zn)的分布并不局限于糊粉层,而是延伸到胚乳中。Fe 的分布模式不那么明显,尤其是 Mn。元素分布在籽粒的腹面和背面之间也存在显著差异。元素之间的相关性在组织之间和组织内并不一致,表明元素的运输和储存受到高度调节。这种空间分布和关联性的复杂性对提高大麦等谷类作物的营养价值具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07aa/2993915/aa1057ef0fd3/jexboterq270f01_ht.jpg

相似文献

1
Megapixel imaging of (micro)nutrients in mature barley grains.
J Exp Bot. 2011 Jan;62(1):273-82. doi: 10.1093/jxb/erq270. Epub 2010 Sep 5.
2
Temporal and Spatial Patterns of Zinc and Iron Accumulation during Barley ( L.) Grain Development.
J Agric Food Chem. 2020 Nov 4;68(44):12229-12240. doi: 10.1021/acs.jafc.0c04833. Epub 2020 Oct 19.
3
Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation.
New Phytol. 2016 Sep;211(4):1241-54. doi: 10.1111/nph.13987. Epub 2016 Apr 29.
4
Spatial X-ray fluorescence micro-imaging of minerals in grain tissues of wheat and related genotypes.
Planta. 2014 Aug;240(2):277-89. doi: 10.1007/s00425-014-2084-4. Epub 2014 May 11.
5
Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels.
Food Chem. 2013 Aug 15;139(1-4):663-71. doi: 10.1016/j.foodchem.2013.01.014. Epub 2013 Jan 23.
6
Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter.
Plant Biotechnol J. 2018 Jan;16(1):63-71. doi: 10.1111/pbi.12749. Epub 2017 Jun 9.
7
Distribution of micronutrients in Arborg oat (Avena sativa L.) using synchrotron X-ray fluorescence imaging.
Food Chem. 2023 Sep 30;421:135661. doi: 10.1016/j.foodchem.2023.135661. Epub 2023 Feb 23.
8
Quantitative Trait Loci and Inter-Organ Partitioning for Essential Metal and Toxic Analogue Accumulation in Barley.
PLoS One. 2016 Apr 14;11(4):e0153392. doi: 10.1371/journal.pone.0153392. eCollection 2016.
9
Investigation of a His-rich arabinogalactan-protein for micronutrient biofortification of cereal grain.
Physiol Plant. 2011 Nov;143(3):271-86. doi: 10.1111/j.1399-3054.2011.01499.x. Epub 2011 Jul 25.

引用本文的文献

1
Variation at the major facilitator superfamily gene influences zinc concentration of barley grain.
Front Plant Sci. 2025 Apr 24;16:1539029. doi: 10.3389/fpls.2025.1539029. eCollection 2025.
4
Cell type-specific mapping of ion distribution in Arabidopsis thaliana roots.
Nat Commun. 2023 Jun 13;14(1):3351. doi: 10.1038/s41467-023-38880-0.
5
Fast X-ray fluorescence microscopy provides high-throughput phenotyping of element distribution in seeds.
Plant Physiol. 2023 Mar 17;191(3):1520-1534. doi: 10.1093/plphys/kiac534.
6
Benchtop X-ray fluorescence imaging as a tool to study gold nanoparticle penetration in 3D cancer spheroids.
RSC Adv. 2021 Aug 2;11(42):26344-26353. doi: 10.1039/d1ra05446e. eCollection 2021 Jul 27.

本文引用的文献

1
Tansley Review No. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species.
New Phytol. 2000 May;146(2):185-205. doi: 10.1046/j.1469-8137.2000.00630.x.
3
Comparative physiology of elemental distributions in plants.
Ann Bot. 2010 Jun;105(7):1081-102. doi: 10.1093/aob/mcq027. Epub 2010 Apr 21.
4
Iron fortification of rice seeds through activation of the nicotianamine synthase gene.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):22014-9. doi: 10.1073/pnas.0910950106.
5
NanoSIMS analysis of arsenic and selenium in cereal grain.
New Phytol. 2010 Jan;185(2):434-45. doi: 10.1111/j.1469-8137.2009.03071.x. Epub 2009 Nov 5.
6
7
In situ imaging of metals in cells and tissues.
Chem Rev. 2009 Oct;109(10):4780-827. doi: 10.1021/cr900223a.
8
Selenium characterization in the global rice supply chain.
Environ Sci Technol. 2009 Aug 1;43(15):6024-30. doi: 10.1021/es900671m.
9
Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin.
Plant Biotechnol J. 2009 Sep;7(7):631-44. doi: 10.1111/j.1467-7652.2009.00430.x.
10
Speciation and distribution of arsenic and localization of nutrients in rice grains.
New Phytol. 2009;184(1):193-201. doi: 10.1111/j.1469-8137.2009.02912.x. Epub 2009 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验