Institute of Structural and Molecular Biology, School of Biological Sciences, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
Bioinformatics. 2010 Oct 15;26(20):2549-55. doi: 10.1093/bioinformatics/btq490. Epub 2010 Sep 6.
The ability to reliably predict protein-protein and protein-ligand interactions is important for identifying druggable binding sites and for understanding how proteins communicate. Most currently available algorithms identify cavities on the protein surface as potential ligand recognition sites. The method described here does not explicitly look for cavities but uses small surface patches consisting of triplets of adjacent surface atomic groups that can be touched simultaneously by a probe sphere representing a solvent molecule. A total of 455 different types of triplets can be identified. A training set of 309 protein-ligand protein X-ray structures has been used to generate interface propensities for the triplets, which can be used to predict their involvement in ligand-binding interactions.
The success rate for locating protein-ligand binding sites on protein surfaces using this new surface triplet propensities (STP) algorithm is 88% which compares well with currently available grid-based and energy-based approaches. Q-SiteFinder's dataset (Laurie and Jackson, 2005. Bioinformatics, 21, 1908-1916) was used to show the favorable performance of STP. An analysis of the different triplet types showed that higher ligand binding propensity is related to more polarizable surfaces. The interaction statistics between triplet atoms on the protein surface and ligand atoms have been used to estimate statistical free energies of interaction. The ΔG(stat) for halogen atoms interacting with hydrophobic triplets is -0.6 kcal/mol and an estimate of the maximal ΔG(stat) for a ligand atom interacting with a triplet in a binding pocket is -1.45 kcal/mol.
Freely available online at http://opus.bch.ed.ac.uk/stp. Website implemented in Php, with all major browsers supported.
Supplementary data are available at Bioinformatics online.
能够可靠地预测蛋白质-蛋白质和蛋白质-配体相互作用对于识别可成药的结合位点以及理解蛋白质如何相互通信非常重要。目前大多数可用的算法都是在蛋白质表面上识别腔作为潜在的配体识别位点。这里描述的方法并不是专门寻找腔,而是使用由三个相邻表面原子组组成的小表面斑块,这些斑块可以同时被一个代表溶剂分子的探针球触及。总共可以识别 455 种不同类型的三联体。已经使用包含 309 个蛋白质-配体蛋白质 X 射线结构的训练集来生成三联体的界面倾向,这些倾向可用于预测它们在配体结合相互作用中的参与情况。
使用这种新的表面三联体倾向 (STP) 算法在蛋白质表面上定位蛋白质-配体结合位点的成功率为 88%,与目前可用的基于网格和基于能量的方法相比表现良好。Laurie 和 Jackson (2005. Bioinformatics, 21, 1908-1916) 的 Q-SiteFinder 数据集用于展示 STP 的良好性能。对不同三联体类型的分析表明,更高的配体结合倾向与更具极化性的表面有关。蛋白质表面上三联体原子与配体原子之间的相互作用统计信息已被用于估计相互作用的统计自由能。卤素原子与疏水性三联体相互作用的 ΔG(stat)为-0.6 kcal/mol,配体原子与结合口袋中三联体相互作用的最大 ΔG(stat)估计值为-1.45 kcal/mol。
可在 http://opus.bch.ed.ac.uk/stp 在线免费获得。网站使用 Php 实现,支持所有主流浏览器。
补充数据可在 Bioinformatics 在线获得。