Mori Shinichiro, Wu Ziji, Folkert Michael R, Kumagai Motoki, Dobashi Suguru, Sugane Toshio, Baba Masayuki
Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa, Chiba, Japan.
Radiol Phys Technol. 2010 Jan;3(1):23-33. doi: 10.1007/s12194-009-0072-3. Epub 2009 Oct 14.
We have developed new design algorithms for compensating boli to facilitate the implementation of four-dimensional charged-particle lung therapy in clinical applications. Four-dimensional CT (4DCT) data for eight lung cancer patients were acquired with a 16-slice CT under free breathing. Six compensating boli were developed that may be categorized into three classes: (1) boli-based on contoured gross tumor volumes (GTV) from a 4DCT data set during each respiratory phase, subsequently combined into one (GTV-4DCT bolus); (2) boli-based on contoured internal target volume (ITV) from image-processed 3DCT data only [temporal-maximum-intensity-projection (TMIP)/temporal-average-intensity-projection (TAIP)] with calculated boli (ITV-TMIP and ITV-TAIP boli); and (3) boli-based on contoured ITV utilizing image-processed 3DCT data, applied to 4DCT for design of boli for each phase, which were then combined. The carbon beam dose distribution within each bolus was calculated as a function of time and compared to plans in which respiratory-ungated/gated strategies were used. The GTV-4DCT treatment plan required a prohibitively long time for contouring the GTV manually for each respiratory phase, but it delivered more than 95% of the prescribed dose to the target volume. The TMIP and TAIP treatments, although more time-efficient, resulted in an unacceptable excess dose to normal tissues and underdosing of the target volume. The dose distribution for the ITV-4DCT bolus was similar to that for the GTV-4DCT bolus and required significantly less practitioner time. The ITV-4DCT bolus treatment plan is time-efficient and provides a high-quality dose distribution, making it a practical alternative to the GTV-4DCT bolus treatment plan.
我们已经开发出了用于补偿射束的新设计算法,以促进四维带电粒子肺部治疗在临床应用中的实施。在自由呼吸状态下,使用16层CT获取了8例肺癌患者的四维CT(4DCT)数据。开发了六种补偿射束,可分为三类:(1)基于每个呼吸阶段4DCT数据集中勾勒出的大体肿瘤体积(GTV)的射束,随后合并为一个(GTV-4DCT射束);(2)仅基于图像处理后的3DCT数据(时间最大强度投影(TMIP)/时间平均强度投影(TAIP))勾勒出的内部靶区体积(ITV)以及计算得出的射束(ITV-TMIP和ITV-TAIP射束);(3)基于利用图像处理后的3DCT数据勾勒出的ITV,应用于4DCT以设计每个阶段的射束,然后将其合并。计算了每个射束内碳离子束剂量分布随时间的变化,并与使用呼吸非门控/门控策略的计划进行了比较。GTV-4DCT治疗计划需要为每个呼吸阶段手动勾勒GTV的时间过长,但它将规定剂量的95%以上输送到了靶区体积。TMIP和TAIP治疗虽然更节省时间,但导致正常组织接受了不可接受的过量剂量,且靶区体积剂量不足。ITV-4DCT射束的剂量分布与GTV-4DCT射束相似,且所需的医生时间显著减少。ITV-4DCT射束治疗计划既节省时间又能提供高质量的剂量分布,使其成为GTV-4DCT射束治疗计划的实用替代方案。