Suppr超能文献

异噻唑类化合物的生物活化:在药物发现中降低潜在毒性风险。

Bioactivation of isothiazoles: minimizing the risk of potential toxicity in drug discovery.

机构信息

Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., Cambridge, Massachusetts 02142, USA.

出版信息

Chem Res Toxicol. 2010 Nov 15;23(11):1743-52. doi: 10.1021/tx100208k. Epub 2010 Sep 8.

Abstract

Compound 1, (7-methoxy-N-((6-(3-methylisothiazol-5-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)-1,5-naphthyridin-4-amine) is a potent, selective inhibitor of c-Met (mesenchymal-epithelial transition factor), a receptor tyrosine kinase that is often deregulated in cancer. Compound 1 displayed desirable pharmacokinetic properties in multiple preclinical species. Glutathione trapping studies in liver microsomes resulted in the NADPH-dependent formation of a glutathione conjugate. Compound 1 also exhibited very high in vitro NADPH-dependent covalent binding to microsomal proteins. Species differences in covalent binding were observed, with the highest binding in rats, mice, and monkeys (1100-1300 pmol/mg/h), followed by dogs (400 pmol/mg/h) and humans (144 pmol/mg/h). This covalent binding to protein was abolished by coincubation with glutathione. Together, these in vitro data suggest that covalent binding and glutathione conjugation proceed via bioactivation to a chemically reactive intermediate. The cytochrome (CYP) P450 enzymes responsible for this bioactivation were identified as cytochrome P450 3A4, 1A2, and 2D6 in human and cytochrome P450 2A2, 3A1, and 3A2 in rats. The glutathione metabolite was detected in the bile of rats and mice, thus demonstrating bioactivation occurring in vivo. Efforts to elucidate the structure of the glutathione adduct led to the isolation and characterization of the metabolite by NMR and mass spectrometry. The analytical data confirmed conclusively that the glutathione conjugation was on the 4-C position of the isothiazole ring. Such P450-mediated bioactivation of an isothiazole or thiazole group has not been previously reported. We propose a mechanism of bioactivation via sulfur oxidation followed by glutathione attack at the 4-position with subsequent loss of water resulting in the formation of the glutathione conjugate. Efforts to reduce bioactivation without compromising potency and pharmacokinetics were undertaken in order to minimize the potential risk of toxicity. Because of the exemplary pharmacokinetic/pharmacodynamic (PK/PD) properties of the isothiazole group, initial attempts were focused on introducing alternative metabolic soft spots into the molecule. These efforts resulted in the discovery of 7-(2-methoxyethoxy)-N-((6-(3-methyl-5-isothiazolyl)[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)-1,5-naphthyridin-4-amine (compound 2), with the major metabolic transformation occurring on the naphthyridine ring alkoxy substituent. However, a glutathione conjugate of compound 2 was produced in vitro and in vivo in a manner similar to that observed for compound 1. Furthermore, the covalent binding was high across species (360, 300, 529, 208, and 98 pmol/mg/h in rats, mice, dogs, monkeys, and humans, respectively), but coincubation with glutathione reduced the extent of covalent binding. The second viable alternative in reducing bioactivation involved replacing the isothiazole ring with bioisosteric heterocycles. Replacement of the isothiazole ring with an isoxazole or a pyrazole reduced the bioactivation while retaining the desirable PK/PD characteristics of compounds 1 and 2.

摘要

化合物 1,(7-甲氧基-N-((6-(3-甲基异噻唑-5-基)-[1,2,4]三唑并[4,3-b]哒嗪-3-基)甲基)-1,5-萘啶-4-胺)是一种有效的、选择性的 c-Met(间质-上皮转化因子)抑制剂,c-Met 是一种受体酪氨酸激酶,在癌症中经常失调。化合物 1 在多种临床前物种中表现出理想的药代动力学特性。在肝微粒体中进行的谷胱甘肽捕获研究导致 NADPH 依赖性形成谷胱甘肽缀合物。化合物 1 还表现出与 microsomal 蛋白非常高的体外 NADPH 依赖性共价结合。观察到物种间的共价结合差异,在大鼠、小鼠和猴子中结合最高(1100-1300 pmol/mg/h),其次是狗(400 pmol/mg/h)和人类(144 pmol/mg/h)。这种与蛋白质的共价结合在与谷胱甘肽共孵育时被废除。综上所述,这些体外数据表明,共价结合和谷胱甘肽缀合通过生物活化进行,形成化学活性中间体。负责这种生物活化的细胞色素 (CYP) P450 酶在人类中被鉴定为细胞色素 P450 3A4、1A2 和 2D6,在大鼠中被鉴定为细胞色素 P450 2A2、3A1 和 3A2。在大鼠和小鼠的胆汁中检测到谷胱甘肽代谢物,从而证明了体内的生物活化。为了阐明谷胱甘肽加合物的结构,通过 NMR 和质谱对代谢物进行了分离和表征。分析数据确凿地证实了谷胱甘肽缀合发生在异噻唑环的 4-C 位置。以前没有报道过 P450 介导的异噻唑或噻唑基团的这种生物活化。我们提出了一种通过硫氧化进行生物活化的机制,随后谷胱甘肽在 4 位攻击,随后失去水,导致形成谷胱甘肽缀合物。为了降低毒性的潜在风险,在不损害效力和药代动力学的情况下,我们努力降低生物活化。由于异噻唑基团出色的药代动力学/药效学 (PK/PD) 特性,最初的尝试集中在引入分子中的替代代谢弱点上。这些努力导致发现了 7-(2-甲氧基乙氧基)-N-((6-(3-甲基-5-异噻唑基)[1,2,4]三唑并[4,3-b]哒嗪-3-基)甲基)-1,5-萘啶-4-胺(化合物 2),主要代谢转化发生在萘啶环烷氧基取代基上。然而,化合物 2 的谷胱甘肽缀合物在体外和体内以类似于观察到化合物 1 的方式产生。此外,在所有物种中,共价结合都很高(在大鼠、小鼠、狗、猴子和人类中分别为 360、300、529、208 和 98 pmol/mg/h),但与谷胱甘肽共孵育可降低共价结合的程度。降低生物活化的第二个可行替代方案涉及用生物等排杂环取代异噻唑环。用异噁唑或吡唑取代异噻唑环降低了生物活化,同时保留了化合物 1 和 2 的理想 PK/PD 特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验