Department of Physiology and Biophysics, Stony Brook University, School of Medicine, Stony Brook, NY 11794-8651, USA.
Biochemistry. 2010 Oct 19;49(41):8978-87. doi: 10.1021/bi101021e.
Ionizing radiation produces a distinctive pattern of bistranded clustered lesions in DNA. A relatively low number of clustered lesions may be lethal to cells when compared to a larger number of single lesions. Enzyme cleavage experiments suggest that the orientation of bistranded lesions causes differential recognition and removal of these lesions. Like that of a previous study of bistranded abasic site lesion [Hazel, R. D., Tian, K., and de los Santos, C. (2008) Biochemistry 47, 11909-11919], the aim of this investigation was to determine the structures of two DNA duplexes each containing two synthetic apurinic/apyrimidinic (AP) residues, positioned on opposite strands and separated by two base pairs. In the first duplex, the AP residues are staggered in the 3' orientation [-3 duplex, (AP)(2)-3 duplex], while in the second duplex, the AP residues are staggered in the 5' orientation [+3 duplex, (AP)(2)+3 duplex]. NOESY spectra recorded in 100 and 10% D(2)O buffer solutions allowed the assignment of the nonexchangeable and exchangeable protons, respectively, for each duplex. Cross-peak connectivity in the nonexchangeable proton spectra indicates that the duplex is a regular right-handed helix with the AP residues and orphan bases located inside the duplexes. The exchangeable proton spectra establish the formation of Watson-Crick G·C alignment for the two base pairs between the lesion sites in both duplexes. Distance-restrained molecular dynamics simulation confirmed the intrahelical orientations of the AP residues. The proximity of the AP residues across the minor groove of the -3 duplex and across the major groove in the +3 duplex is similar to their locations in the case of -1 and +1 clusters. This difference in structure may be a key factor in the differential recognition of bistranded AP lesions by human AP endonuclease.
电离辐射会在 DNA 中产生双链交联损伤的独特模式。与大量单个损伤相比,相对较少数量的交联损伤可能对细胞具有致命性。酶切割实验表明,双链损伤的取向导致这些损伤的差异识别和去除。与之前对双链无碱基位点损伤的研究相似[Hazel, R. D., Tian, K., and de los Santos, C. (2008) Biochemistry 47, 11909-11919],本研究旨在确定两个 DNA 双链体的结构,每个双链体都包含两个位于相反链上且相隔两个碱基的合成无碱基/嘧啶(AP)残基。在第一个双链体中,AP 残基以 3' 取向交错[-3 双链体,(AP)(2)-3 双链体],而在第二个双链体中,AP 残基以 5' 取向交错[+3 双链体,(AP)(2)+3 双链体]。在 100%和 10% D2O 缓冲溶液中记录的 NOESY 谱分别允许对每个双链体的不可交换和可交换质子进行分配。不可交换质子谱中的交叉峰连接表明,双链体是一个规则的右手螺旋,AP 残基和孤儿碱基位于双链体内部。可交换质子谱确定了两个双链体中损伤部位之间的两个碱基对形成 Watson-Crick G·C 对齐。距离约束分子动力学模拟证实了 AP 残基的内螺旋取向。-3 双链体中穿过小沟的 AP 残基之间以及+3 双链体中穿过大沟的 AP 残基之间的接近程度与-1 和+1 簇中它们的位置相似。这种结构上的差异可能是人类 AP 内切酶对双链 AP 损伤差异识别的关键因素。