Suppr超能文献

野生型和 UCP1-KO 小鼠的适应性生热和热导率。

Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice.

机构信息

Dept. of Animal Physiology, Faculty of Biology, Philipps-Universität, Karl-von-Frisch Strasse 8, 35032 Marburg, Germany.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1396-406. doi: 10.1152/ajpregu.00021.2009. Epub 2010 Sep 8.

Abstract

We compared maximal cold-induced heat production (HPmax) and cold limits between warm (WA; 27°C), moderate cold (MCA; 18°C), or cold acclimated (CA; 5°C) wild-type and uncoupling-protein 1 knockout (UCP1-KO) mice. In wild-type mice, HPmax was successively increased after MCA and CA, and the cold limit was lowered to -8.3°C and -18.0°C, respectively. UCP1-KO mice also increased HPmax in response to MCA and CA, although to a lesser extent. Direct comparison revealed a maximal cold-induced recruitment of heat production by +473 mW and +227 mW in wild-type and UCP1-KO mice, respectively. The increase in cold tolerance of UCP1-KO mice from -0.9°C in MCA to -10.1°C in CA could not be directly related to changes in HPmax, indicating that UCP1-KO mice used the dissipated heat more efficiently than wild-type mice. As judged from respiratory quotients, acutely cold-challenged UCP1-KO mice showed a delayed transition toward lipid oxidation, and 5-h cold exposure revealed diminished physical activity and less variability in the control of metabolic rate. We conclude that BAT is required for maximal adaptive thermogenesis but also allows metabolic flexibility and a rapid switch toward sustained lipid-fuelled thermogenesis as an acute response to cold. In both CA groups, expression of contractile proteins (myosin heavy-chain isoforms) showed minor training effects in skeletal muscles, while cardiac muscle of UCP1-KO mice had novel expression of beta cardiac isoform. Neither respiration nor basal proton conductance of skeletal muscle mitochondria were different between genotypes. In subcutaneous white adipose tissue of UCP1-KO mice, cold exposure increased cytochrome-c oxidase activity and expression of the cell death-inducing DFFA-like effector A by 3.6-fold and 15-fold, respectively, indicating the recruitment of mitochondria-rich brown adipocyte-like cells. Absence of functional BAT leads to remodeling of white adipose tissue, which may significantly contribute to adaptive thermogenesis during cold acclimation.

摘要

我们比较了热产生的最大冷诱导(HPmax)和冷极限在温暖(WA;27°C)、中度冷(MCA;18°C)或冷适应(CA;5°C)野生型和解偶联蛋白 1 敲除(UCP1-KO)小鼠之间。在野生型小鼠中,MCA 和 CA 后 HPmax 依次增加,冷极限分别降至-8.3°C 和-18.0°C。UCP1-KO 小鼠也对 MCA 和 CA 产生了 HPmax 的增加,尽管程度较小。直接比较显示,野生型和 UCP1-KO 小鼠的最大冷诱导热量产生分别增加了+473 mW 和+227 mW。UCP1-KO 小鼠从 MCA 的-0.9°C到 CA 的-10.1°C的冷耐受性增加不能直接与 HPmax 的变化相关,表明 UCP1-KO 小鼠比野生型小鼠更有效地利用耗散热量。从呼吸商判断,急性冷挑战的 UCP1-KO 小鼠显示出向脂质氧化的延迟转变,5 小时的冷暴露显示出身体活动减少,代谢率控制的变异性降低。我们得出结论,BAT 是最大适应性产热所必需的,但也允许代谢灵活性和快速向持续的脂质供能产热转变,作为对冷的急性反应。在 CA 两组中,收缩蛋白(肌球蛋白重链同工型)的表达在骨骼肌中显示出较小的训练效应,而 UCP1-KO 小鼠的心肌具有新型的β型心脏同工型表达。呼吸和骨骼肌线粒体的基础质子电导率在基因型之间没有差异。在 UCP1-KO 小鼠的皮下白色脂肪组织中,冷暴露分别使细胞色素-c 氧化酶活性和细胞死亡诱导 DFFA 样效应物 A 的表达增加 3.6 倍和 15 倍,表明募集富含线粒体的棕色脂肪细胞样细胞。功能性 BAT 的缺失导致白色脂肪组织的重塑,这可能在冷适应期间对适应性产热有显著贡献。

相似文献

1
Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice.
Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1396-406. doi: 10.1152/ajpregu.00021.2009. Epub 2010 Sep 8.
3
UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice.
Metabolism. 2020 Dec;113:154396. doi: 10.1016/j.metabol.2020.154396. Epub 2020 Oct 14.
4
Cold-induced alterations of phospholipid fatty acyl composition in brown adipose tissue mitochondria are independent of uncoupling protein-1.
Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1086-93. doi: 10.1152/ajpregu.00128.2007. Epub 2007 Jul 3.
6
Nonshivering thermogenesis protects against defective calcium handling in muscle.
FASEB J. 2008 Nov;22(11):3919-24. doi: 10.1096/fj.08-113712. Epub 2008 Aug 7.
7
The molecular and biochemical basis of nonshivering thermogenesis in an African endemic mammal, Elephantulus myurus.
Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2120-7. doi: 10.1152/ajpregu.00427.2007. Epub 2007 Aug 8.
8
Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice.
J Biol Chem. 2017 Oct 6;292(40):16616-16625. doi: 10.1074/jbc.M117.790451. Epub 2017 Aug 9.
9
Thermogenesis in CD-1 mice after combined chronic hypoxia and cold acclimation.
Comp Biochem Physiol B Biochem Mol Biol. 2010 Nov;157(3):301-9. doi: 10.1016/j.cbpb.2010.07.004. Epub 2010 Jul 23.
10
Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance.
J Lipid Res. 2014 Mar;55(3):398-409. doi: 10.1194/jlr.M042895. Epub 2013 Dec 16.

引用本文的文献

1
deficiency in neutrophils alleviates symptoms induced by high-fat diet.
iScience. 2025 Feb 25;28(3):112038. doi: 10.1016/j.isci.2025.112038. eCollection 2025 Mar 21.
3
Thermogenic Adipocytes Promote M2 Macrophage Polarization through CNNM4-Mediated Mg Secretion.
Adv Sci (Weinh). 2024 Dec;11(47):e2401140. doi: 10.1002/advs.202401140. Epub 2024 Nov 8.
4
Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2412526121. doi: 10.1073/pnas.2412526121. Epub 2024 Oct 1.
5
Development of a functional beige fat cell line uncovers independent subclasses of cells expressing UCP1 and the futile creatine cycle.
Cell Metab. 2024 Sep 3;36(9):2146-2155.e5. doi: 10.1016/j.cmet.2024.07.002. Epub 2024 Jul 30.
6
Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity.
Physiol Res. 2024 Aug 30;73(S1):S279-S294. doi: 10.33549/physiolres.935361. Epub 2024 May 15.
7
Proline hydroxylase 2 (PHD2) promotes brown adipose thermogenesis by enhancing the hydroxylation of UCP1.
Mol Metab. 2023 Jul;73:101747. doi: 10.1016/j.molmet.2023.101747. Epub 2023 Jun 4.
9
Thermogenic adipocyte-derived zinc promotes sympathetic innervation in male mice.
Nat Metab. 2023 Mar;5(3):481-494. doi: 10.1038/s42255-023-00751-9. Epub 2023 Mar 6.
10
Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue.
Int J Obes (Lond). 2023 May;47(5):338-347. doi: 10.1038/s41366-023-01270-z. Epub 2023 Feb 11.

本文引用的文献

1
Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice.
J Comp Physiol B. 2011 Jan;181(1):137-45. doi: 10.1007/s00360-010-0503-9. Epub 2010 Aug 1.
3
Uncoupling protein 1 decreases superoxide production in brown adipose tissue mitochondria.
J Biol Chem. 2010 Jul 16;285(29):21961-8. doi: 10.1074/jbc.M110.122861. Epub 2010 May 13.
4
Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes.
Science. 2010 May 28;328(5982):1158-61. doi: 10.1126/science.1186034. Epub 2010 May 6.
5
Human brown adipose tissue.
Cell Metab. 2010 Apr 7;11(4):248-52. doi: 10.1016/j.cmet.2010.03.008.
7
Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle.
Neuroscience. 2009 Dec 1;164(2):849-61. doi: 10.1016/j.neuroscience.2009.08.013. Epub 2009 Aug 11.
8
Nonshivering thermogenesis protects against defective calcium handling in muscle.
FASEB J. 2008 Nov;22(11):3919-24. doi: 10.1096/fj.08-113712. Epub 2008 Aug 7.
9
Inactivation of UCP1 and the glycerol phosphate cycle synergistically increases energy expenditure to resist diet-induced obesity.
J Biol Chem. 2008 Oct 10;283(41):27688-27697. doi: 10.1074/jbc.M804268200. Epub 2008 Aug 4.
10
Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis.
Physiol Genomics. 2008 Jan 17;32(2):161-9. doi: 10.1152/physiolgenomics.00183.2007. Epub 2007 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验