Grupo de Ecología Matemática, Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Casilla, Chile.
Bull Math Biol. 2011 Jun;73(6):1378-97. doi: 10.1007/s11538-010-9577-5. Epub 2010 Sep 10.
This work aims to examine the global behavior of a Gause type predator-prey model considering two aspects: (i) the functional response is Holling type III and, (ii) the prey growth is affected by the Allee effect. We prove the origin of the system is an attractor equilibrium point for all parameter values. It has also been shown that it is the ω-limit of a wide set of trajectories of the system, due to the existence of a separatrix curve determined by the stable manifold of the equilibrium point (m,0), which is associated to the Allee effect on prey. When a weak Allee effect on the prey is assumed, an important result is obtained, involving the existence of two limit cycles surrounding a unique positive equilibrium point: the innermost cycle is unstable and the outermost stable. This property, not yet reported in models considering a sigmoid functional response, is an important aspect for ecologists to acknowledge as regards the kind of tristability shown here: (1) the origin; (2) an interior equilibrium; and (3) a limit cycle of large amplitude. These models have undoubtedly been rather sensitive to disturbances and require careful management in applied conservation and renewable resource contexts.
本研究旨在探讨考虑两个方面的 Gause 型捕食者-被捕食者模型的全局行为:(i)功能反应为 Holling 型 III 型,(ii)被捕食者的生长受到食饵效应的影响。我们证明了对于所有参数值,系统的原点都是吸引平衡点。还表明,由于平衡点(m,0)的稳定流形确定的分离曲线的存在,系统的广泛轨迹的 ω-极限,这与食饵的食饵效应有关。当假设食饵的弱食饵效应时,得到了一个重要的结果,涉及到围绕一个独特的正平衡点的两个极限环的存在:最内的环是不稳定的,而最外的环是稳定的。这种性质,在考虑 S 型功能反应的模型中尚未报道,对于生态学家来说,是需要承认的,因为这里显示了一种三体稳定性:(1)原点;(2)内部平衡;(3)大振幅的极限环。这些模型无疑对干扰非常敏感,并且在应用保护和可再生资源方面需要谨慎管理。