Suppr超能文献

缺氧诱导的血管反应中鸟苷酸环化酶和蛋白激酶 G 的氧化还原调节。

Redox regulation of guanylate cyclase and protein kinase G in vascular responses to hypoxia.

机构信息

Department of Physiology, New York Medical College, Valhalla, NY 10595, United States.

出版信息

Respir Physiol Neurobiol. 2010 Dec 31;174(3):259-64. doi: 10.1016/j.resp.2010.08.024. Epub 2010 Sep 8.

Abstract

The production of cGMP by the soluble form of guanylate cyclase (sGC) in bovine pulmonary arteries (BPA) is controlled by cytosolic NADPH maintaining reduced thiol and heme sites on sGC needed for activation by NO, and the levels of Nox oxidase-derived superoxide and peroxide that influence pathways regulating sGC activity. Our recent studies in BPA suggest that the activities of peroxide metabolizing pathways in vascular smooth muscle potentially determine the balance between sGC stimulation by peroxide and a cGMP-independent activation of cGMP-dependent protein kinase (PKG) by a disulfide-mediated subunit dimerization. Cytosolic NADPH oxidation also appears to function in BPA through its influence on protein thiol redox control as an additional mechanism promoting vascular relaxation through PKG activation. These processes regulating PKG may participate in decreases in peroxide and increases in NADPH associated with contraction of BPA to hypoxia and in cytosolic NADPH oxidation potentially mediating bovine coronary artery relaxation to hypoxia.

摘要

可溶性鸟苷酸环化酶(sGC)在牛肺动脉(BPA)中产生 cGMP 的过程受到细胞溶质 NADPH 的控制,细胞溶质 NADPH 维持 sGC 上的还原硫醇和血红素位点,这些位点是 sGC 被 NO 激活所必需的,并且还受到影响调节 sGC 活性的途径的 Nox 氧化酶衍生的超氧化物和过氧化物的水平的影响。我们最近在 BPA 中的研究表明,血管平滑肌中过氧化物代谢途径的活性可能决定了过氧化物对 sGC 的刺激与二硫键介导的亚基二聚化引起的 cGMP 依赖性蛋白激酶(PKG)的 cGMP 非依赖性激活之间的平衡。细胞溶质 NADPH 的氧化似乎也通过其对蛋白硫醇氧化还原控制的影响在 BPA 中发挥作用,这是通过 PKG 激活促进血管舒张的另一种机制。这些调节 PKG 的过程可能参与到 BPA 对缺氧的收缩时过氧化物的减少和 NADPH 的增加,以及细胞溶质 NADPH 氧化可能介导牛冠状动脉对缺氧的舒张。

相似文献

1
Redox regulation of guanylate cyclase and protein kinase G in vascular responses to hypoxia.
Respir Physiol Neurobiol. 2010 Dec 31;174(3):259-64. doi: 10.1016/j.resp.2010.08.024. Epub 2010 Sep 8.
2
Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2295-304. doi: 10.1152/ajpheart.00624.2011. Epub 2011 Sep 16.
3
Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α.
Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H330-43. doi: 10.1152/ajpheart.01010.2011. Epub 2013 May 24.
4
Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relaxation to hydrogen peroxide.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1235-41. doi: 10.1152/ajpheart.00513.2010. Epub 2010 Aug 13.
5
Reactive oxygen species and the control of vascular function.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H539-49. doi: 10.1152/ajpheart.01167.2008. Epub 2009 Jan 16.
6
Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation.
Am J Physiol Lung Cell Mol Physiol. 2006 Mar;290(3):L549-57. doi: 10.1152/ajplung.00331.2005. Epub 2005 Nov 4.
7
8
Redox regulation of responses to hypoxia and NO-cGMP signaling in pulmonary vascular pathophysiology.
Ann N Y Acad Sci. 2010 Aug;1203:126-32. doi: 10.1111/j.1749-6632.2010.05557.x.
9
NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO.
Am J Physiol. 1999 Dec;277(6):L1124-32. doi: 10.1152/ajplung.1999.277.6.L1124.
10

引用本文的文献

1
Intracellular cGMP increase is not involved in thyroid cancer cell death.
PLoS One. 2023 Mar 30;18(3):e0283888. doi: 10.1371/journal.pone.0283888. eCollection 2023.
2
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy.
Int J Mol Sci. 2020 Jun 18;21(12):4349. doi: 10.3390/ijms21124349.
3
Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology.
Antioxid Redox Signal. 2019 Oct 1;31(10):752-769. doi: 10.1089/ars.2018.7657. Epub 2018 Dec 21.
4
Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology.
Adv Exp Med Biol. 2017;967:227-240. doi: 10.1007/978-3-319-63245-2_13.
5
cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.
PLoS One. 2016 Nov 18;11(11):e0166717. doi: 10.1371/journal.pone.0166717. eCollection 2016.
6
Scutellarin Reduces Endothelium Dysfunction through the PKG-I Pathway.
Evid Based Complement Alternat Med. 2015;2015:430271. doi: 10.1155/2015/430271. Epub 2015 Oct 19.
7
Hydrogen sulfide and endothelium-dependent vasorelaxation.
Molecules. 2014 Dec 16;19(12):21183-99. doi: 10.3390/molecules191221183.
8
Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α.
Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H330-43. doi: 10.1152/ajpheart.01010.2011. Epub 2013 May 24.
9
Making sense of oxidative stress in obstructive sleep apnea: mediator or distracter?
Front Neurol. 2012 Dec 27;3:179. doi: 10.3389/fneur.2012.00179. eCollection 2012.
10
Relationships between vascular oxygen sensing mechanisms and hypertensive disease processes.
Hypertension. 2012 Aug;60(2):269-75. doi: 10.1161/HYPERTENSIONAHA.112.190702. Epub 2012 Jun 18.

本文引用的文献

2
Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relaxation to hydrogen peroxide.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1235-41. doi: 10.1152/ajpheart.00513.2010. Epub 2010 Aug 13.
3
Hypoxic relaxation of penile arteries: involvement of endothelial nitric oxide and modulation by reactive oxygen species.
Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H915-24. doi: 10.1152/ajpheart.00382.2010. Epub 2010 Jun 25.
4
Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction.
J Biol Chem. 2010 Jun 18;285(25):19561-71. doi: 10.1074/jbc.M109.092916. Epub 2010 Apr 2.
5
Roles for Nox4 in the contractile response of bovine pulmonary arteries to hypoxia.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1879-88. doi: 10.1152/ajpheart.01228.2009. Epub 2010 Mar 19.
6
A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21602-7. doi: 10.1073/pnas.0911083106. Epub 2009 Dec 9.
7
Dual pathways of carbon monoxide-mediated vasoregulation: modulation by redox mechanisms.
Circ Res. 2009 Oct 9;105(8):775-83. doi: 10.1161/CIRCRESAHA.109.197434. Epub 2009 Sep 10.
8
Heme oxygenase-1 induction modulates hypoxic pulmonary vasoconstriction through upregulation of ecSOD.
Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1453-61. doi: 10.1152/ajpheart.00315.2009. Epub 2009 Aug 7.
9
Reactive oxygen species and the control of vascular function.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H539-49. doi: 10.1152/ajpheart.01167.2008. Epub 2009 Jan 16.
10
Cysteine redox sensor in PKGIa enables oxidant-induced activation.
Science. 2007 Sep 7;317(5843):1393-7. doi: 10.1126/science.1144318. Epub 2007 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验