Department of Animal and Food Sciences, Texas Tech University, Lubbock 79409-2141, USA.
J Anim Sci. 2011 Jun;89(6):1865-72. doi: 10.2527/jas.2010-3328. Epub 2010 Sep 10.
Predicting performance is vital to management and marketing decisions in commercial feedlots. Agreement between performance predicted from NE equations or empirical regression relationships and actual performance is generally very good, suggesting that factors affecting performance by finishing cattle are fairly well documented. The challenge for feedlot managers is to predict performance with limited information at the start of the feeding period. Data on sex and initial shrunk BW (ISBW) are typically available when cattle start on feed. Relationships between ISBW, sex, and performance were evaluated using 3,363 pen records collected over 4 yr from 3 commercial feedlots in the Texas Panhandle. Mixed-model regression was used to account for random effects of feedlot × season × year and fixed effects of ISBW (range = 227 to 451 kg), sex (steer or heifer), and ISBW × sex (P < 0.10 for all variables evaluated). Previously developed equations indicated that with intercept and slope adjustments for sex, ISBW accounted for 76 and 84% of the variation in DMI and final shrunk BW (FSBW), respectively. Similarly, newly developed regression equations that included ISBW, sex, and ISBW × sex accounted for 46 and 81% of the variation in ADG and HCW, respectively. Initial BW was negatively related to G:F (R(2) = 0.22). Including early DMI data (DMI from d 8 to 28) increased R(2) and decreased prediction error for DMI, indicating that updating predictions with interim intake data might prove beneficial. An independent data set (781 lots of steers and heifers) collected during 1 yr from 2 Texas Panhandle feedlots was used to validate equations developed with the larger database. Dry matter intake predicted from ISBW and sex accounted for 69% of the variation in observed DMI (SE of prediction = 0.47; mean bias = 0.42 kg). Predicting DMI with ISBW, sex, and DMI from d 8 to 28 of the feeding period increased r(2) to 0.76 and slightly decreased the SE of prediction (0.42 kg), but the equation had a strong linear bias (-0.174; P < 0.001). The r(2) values for regression of observed on predicted ADG, G:F, FSBW, and HCW were 0.37, 0.08, 0.74, and 0.73, respectively, with positive mean bias (underprediction for all equations). Average daily gain calculated with NE equations from predicted DMI (ISBW and sex equation) and predicted FSBW had a similar r(2) (0.38) but less mean bias (-0.08 kg) than ADG predicted directly from ISBW and sex. Adjustments to equations for animal type, health, and management effects would likely improve predictions. Nonetheless, results suggest that predicting performance from initial BW with adjustments for steers vs. heifers should have considerable utility in practical settings.
预测性能对于商业饲养场的管理和营销决策至关重要。从 NE 方程或经验回归关系预测的性能与实际性能之间的一致性通常非常好,这表明影响育肥牛性能的因素已经得到了很好的记录。对于饲养场经理来说,挑战在于在饲养期开始时用有限的信息来预测性能。当牛开始进食时,通常可以获得性别和初始收缩 BW(ISBW)的数据。使用来自德克萨斯潘汉德尔 3 个商业饲养场的 4 年期间收集的 3363 个笔记录,评估了 ISBW、性别和性能之间的关系。混合模型回归用于解释饲养场×季节×年份的随机效应和 ISBW(范围为 227 至 451 千克)、性别(公牛或小母牛)和 ISBW×性别(所有评估变量的 P <0.10)的固定效应。先前开发的方程表明,通过对性别进行截距和斜率调整,ISBW 分别解释了 DMI 和最终收缩 BW(FSBW)变化的 76%和 84%。同样,新开发的包含 ISBW、性别和 ISBW×性别方程分别解释了 ADG 和 HCW 变化的 46%和 81%。初始 BW 与 G:F 呈负相关(R²=0.22)。包括早期 DMI 数据(d8 至 28 天的 DMI)增加了 R²并降低了 DMI 的预测误差,这表明用中期摄入量数据更新预测可能会证明是有益的。来自德克萨斯潘汉德尔 2 个饲养场的 1 年期间收集的一个独立数据集(781 批公牛和小母牛)用于验证使用更大数据库开发的方程。从 ISBW 和性别预测的干物质摄入量占观察到的 DMI 变化的 69%(预测误差的 SE=0.47;平均偏差=0.42 千克)。使用 ISBW、性别和饲养期第 8 至 28 天的 DMI 预测 DMI 可将 r²提高到 0.76,并略微降低预测误差(0.42 千克),但该方程具有很强的线性偏差(-0.174;P <0.001)。观察到的 ADG、G:F、FSBW 和 HCW 与预测值的回归 r²值分别为 0.37、0.08、0.74 和 0.73,均呈正平均偏差(所有方程均低估)。从预测的 DMI(ISBW 和性别方程)和预测的 FSBW 计算的 NE 方程预测的 ADG 具有相似的 r²(0.38),但平均偏差(-0.08 千克)小于直接从 ISBW 和性别预测的 ADG。对动物类型、健康和管理效果的方程进行调整可能会提高预测效果。尽管如此,结果表明,根据初始 BW 并对公牛与小母牛进行调整来预测性能在实际应用中应该具有相当大的实用性。