Suppr超能文献

拟南芥基因组中表观遗传修饰的自动催化分化。

Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome.

机构信息

Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan.

出版信息

EMBO J. 2010 Oct 20;29(20):3496-506. doi: 10.1038/emboj.2010.227. Epub 2010 Sep 10.

Abstract

In diverse eukaryotes, constitutively silent sequences, such as transposons and repeats, are marked by methylation at histone H3 lysine 9 (H3K9me). Although selective H3K9me is critical for maintaining genome integrity, mechanisms to exclude H3K9me from active genes remain largely unexplored. Here, we show in Arabidopsis that the exclusion depends on a histone demethylase gene, IBM1 (increase in BONSAI methylation). Loss-of-function ibm1 mutation results in ectopic H3K9me and non-CG methylation in thousands of genes. The ibm1-induced genic H3K9me depends on both histone methylase KYP/SUVH4 and DNA methylase CMT3, suggesting interdependence of two epigenetic marks--H3K9me and non-CG methylation. Notably, IBM1 enhances loss of H3K9me in transcriptionally de-repressed sequences. Furthermore, disruption of transcription in genes induces ectopic non-CG methylation, which mimics the loss of IBM1 function. We propose that active chromatin is stabilized by an autocatalytic loop of transcription and H3K9 demethylation. This process counteracts a similarly autocatalytic accumulation of silent epigenetic marks, H3K9me and non-CG methylation.

摘要

在不同的真核生物中,组成型沉默序列,如转座子和重复序列,通过组蛋白 H3 赖氨酸 9(H3K9me)的甲基化来标记。尽管选择性 H3K9me 对于维持基因组完整性至关重要,但将 H3K9me 排除在活性基因之外的机制在很大程度上仍未得到探索。在这里,我们在拟南芥中表明,这种排除依赖于一个组蛋白去甲基化酶基因 IBM1(增加 BONSAI 甲基化)。ibm1 功能丧失突变导致数千个基因中出现异位 H3K9me 和非 CG 甲基化。ibm1 诱导的基因 H3K9me 既依赖于组蛋白甲基转移酶 KYP/SUVH4,也依赖于 DNA 甲基转移酶 CMT3,表明两种表观遗传标记——H3K9me 和非 CG 甲基化之间存在相互依赖性。值得注意的是,IBM1 增强了转录去抑制序列中 H3K9me 的丢失。此外,基因中转录的中断会诱导异位非 CG 甲基化,这模拟了 IBM1 功能的丧失。我们提出,活性染色质通过转录和 H3K9 去甲基化的自动催化循环得到稳定。这个过程与沉默的表观遗传标记(H3K9me 和非 CG 甲基化)的类似自动催化积累相抗衡。

相似文献

1
Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome.
EMBO J. 2010 Oct 20;29(20):3496-506. doi: 10.1038/emboj.2010.227. Epub 2010 Sep 10.
2
DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns.
EMBO J. 2012 Jun 29;31(13):2981-93. doi: 10.1038/emboj.2012.141. Epub 2012 May 11.
3
RNAi-independent de novo DNA methylation revealed in Arabidopsis mutants of chromatin remodeling gene DDM1.
Plant J. 2012 Jun;70(5):750-8. doi: 10.1111/j.1365-313X.2012.04911.x. Epub 2012 Mar 6.
4
An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites.
EMBO J. 2009 Apr 22;28(8):1078-86. doi: 10.1038/emboj.2009.59. Epub 2009 Mar 5.
5
Small RNAs prevent transcription-coupled loss of histone H3 lysine 9 methylation in Arabidopsis thaliana.
PLoS Genet. 2011 Oct;7(10):e1002350. doi: 10.1371/journal.pgen.1002350. Epub 2011 Oct 27.
6
SHOOT GROWTH1 maintains Arabidopsis epigenomes by regulating IBM1.
PLoS One. 2014 Jan 3;9(1):e84687. doi: 10.1371/journal.pone.0084687. eCollection 2014.
8
Epigenetic regulation of high light-induced anthocyanin biosynthesis by histone demethylase IBM1 in Arabidopsis.
New Phytol. 2024 Jun;242(6):2570-2585. doi: 10.1111/nph.19789. Epub 2024 May 6.
9
Dynamic evolution of the heterochromatin sensing histone demethylase IBM1.
PLoS Genet. 2024 Jul 11;20(7):e1011358. doi: 10.1371/journal.pgen.1011358. eCollection 2024 Jul.
10
Histone demethylase IBM1-mediated meiocyte gene expression ensures meiotic chromosome synapsis and recombination.
PLoS Genet. 2022 Feb 22;18(2):e1010041. doi: 10.1371/journal.pgen.1010041. eCollection 2022 Feb.

引用本文的文献

1
Epigenetics in the modern era of crop improvements.
Sci China Life Sci. 2025 Jan 8. doi: 10.1007/s11427-024-2784-3.
3
Dynamic evolution of the heterochromatin sensing histone demethylase IBM1.
PLoS Genet. 2024 Jul 11;20(7):e1011358. doi: 10.1371/journal.pgen.1011358. eCollection 2024 Jul.
4
H3K9 methylation regulates heterochromatin silencing through incoherent feedforward loops.
Sci Adv. 2024 Jun 28;10(26):eadn4149. doi: 10.1126/sciadv.adn4149. Epub 2024 Jun 26.
5
Cotranscriptional demethylation induces global loss of H3K4me2 from active genes in Arabidopsis.
EMBO J. 2023 Dec 1;42(23):e113798. doi: 10.15252/embj.2023113798. Epub 2023 Oct 18.
8
ZMP recruits and excludes Pol IV-mediated DNA methylation in a site-specific manner.
Sci Adv. 2022 Nov 25;8(47):eadc9454. doi: 10.1126/sciadv.adc9454.

本文引用的文献

1
Genome-wide evolutionary analysis of eukaryotic DNA methylation.
Science. 2010 May 14;328(5980):916-9. doi: 10.1126/science.1186366. Epub 2010 Apr 15.
2
Histone methylation in higher plants.
Annu Rev Plant Biol. 2010;61:395-420. doi: 10.1146/annurev.arplant.043008.091939.
3
JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis.
Cell Res. 2010 Mar;20(3):387-90. doi: 10.1038/cr.2010.27. Epub 2010 Feb 23.
4
Human DNA methylomes at base resolution show widespread epigenomic differences.
Nature. 2009 Nov 19;462(7271):315-22. doi: 10.1038/nature08514. Epub 2009 Oct 14.
5
Selective epigenetic control of retrotransposition in Arabidopsis.
Nature. 2009 Sep 17;461(7262):427-30. doi: 10.1038/nature08328. Epub 2009 Sep 6.
6
Bursts of retrotransposition reproduced in Arabidopsis.
Nature. 2009 Sep 17;461(7262):423-6. doi: 10.1038/nature08351. Epub 2009 Sep 6.
7
Chromatin: sub out the replacement.
Curr Biol. 2009 Jul 28;19(14):R545-7. doi: 10.1016/j.cub.2009.06.032.
8
An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites.
EMBO J. 2009 Apr 22;28(8):1078-86. doi: 10.1038/emboj.2009.59. Epub 2009 Mar 5.
9
RNA-mediated chromatin-based silencing in plants.
Curr Opin Cell Biol. 2009 Jun;21(3):367-76. doi: 10.1016/j.ceb.2009.01.025. Epub 2009 Feb 23.
10
Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks.
Nature. 2008 Nov 6;456(7218):125-9. doi: 10.1038/nature07324. Epub 2008 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验