Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain.
Chemistry. 2010 Oct 18;16(39):11897-905. doi: 10.1002/chem.201001254.
Understanding the bonding in complexes X:BH(3-n)F(n) and X:BH(3-n)Cl(n), for X=N(2), HCN, LiCN, H(2)CNH, NF(3), NH(3) with n=0-3, is a challenging task. The trends in calculated binding energies cannot be explained in terms of any of the usual indexes, including π donation from the halogen lone pairs to the p(π) empty orbital on B, deformation energies, charge capacities, or LUMO energies, which are normally invoked to explain the higher Lewis acidity of BCl(3) relative to BF(3). The results of the high-level G3B3 ab initio calculations reported in this study suggest that the interaction energies of these complexes are determined by a combination of at least three factors. These include the decrease in the electron-accepting ability of B as a result of π donation by the halogen atom, the increase in the electron-acceptor capacity of B due to deformation of the acid, and the large increase in the deformation energy of the acid with increasing halogen substitution. The dominant effects are those derived from the electronic effects of acid deformation. Deformation not only has direct energetic consequences, which are reflected in the large differences between dissociation (D(0)) and interaction (E(int)) energies, but also leads to an enhancement of the intrinsic acidities of BH(3-n)F(n) and BH(3-n)Cl(n) moieties by lowering the LUMO energies to very different extents, consistent with the frontier orbital model of chemical reactivity. Although this lowering depends on both the number and the nature of the halogen substituents, binding energies do not systematically increase or decrease as the number of halogen atoms increases.
理解复合物 X:BH(3-n)F(n) 和 X:BH(3-n)Cl(n)(X=N(2)、HCN、LiCN、H(2)CNH、NF(3)、NH(3),n=0-3)中的成键情况是一项具有挑战性的任务。计算得到的结合能趋势不能用任何常用指标来解释,包括卤素孤对电子向 B 的 p(π)空轨道的π供体、变形能、电荷容量或最低未占分子轨道 (LUMO) 能量,这些指标通常用于解释 BCl(3)相对于 BF(3)的更高路易斯酸度。本研究中报道的高级 G3B3 从头算计算结果表明,这些复合物的相互作用能由至少三个因素决定。这些因素包括卤素原子的π供体导致 B 的电子接受能力下降、酸的变形导致 B 的电子接受能力增加以及随着卤素取代度的增加酸的变形能大幅增加。主要影响来自酸变形的电子效应。变形不仅具有直接的能量后果,这反映在离解 (D(0)) 和相互作用 (E(int)) 能量之间的巨大差异中,而且通过将 LUMO 能量降低到非常不同的程度,增强了 BH(3-n)F(n)和 BH(3-n)Cl(n)部分的固有酸度,这与化学反应性的前线轨道模型一致。虽然这种降低取决于卤素取代基的数量和性质,但结合能不会随着卤素原子数量的增加而系统地增加或减少。